Equation of any circle, with any radius, and its center at any point:
[ x - (x-coordinate of the center) ]2 + [ y - (y-coordinate of the center) ]2 = (radius of the circle)2
The general equation for the circle - or one of them - is: (x - a)^2 + (y - b)^2 = r^2 Where: a and b are the coordinates of the center r is the radius
The general equation of a circle is given by the formula(x - h)2 + (x - k)2 = r2, where (h, k) is the center of the circle, and r its radius.Since the center of the circle is (0, 0), the equation reduces tox2 + y2 = r2So that the equation of our circle is x2 + y2 = 36.
The equation of the circle is: (x+3.2)^2 +(y+2.1)^2 = 18.49
The answer depends on what information is available and in what form.The simplest solution is to write the equation of the circle in the following form:(x - a)^2 + (y - b)^2 = r^2Hiving done that, the coordinates of the centre are (a, b), and the circle's radius is r.
Center of circle: (2, 5) Point of contact with the x axis: (2, 0) Distance from (2, 5) to (2, 0) equals 5 which is the radius of the circle Equation of the circle: (x-2)^2 +(y-5)^2 = 25
The standard equation of a circle, with center in (a,b) and radius r, is: (x-a)2 + (y-b)2 = r2
The general equation for the circle - or one of them - is: (x - a)^2 + (y - b)^2 = r^2 Where: a and b are the coordinates of the center r is the radius
depends on the equation.
9
The general equation of a circle is given by the formula(x - h)2 + (x - k)2 = r2, where (h, k) is the center of the circle, and r its radius.Since the center of the circle is (0, 0), the equation reduces tox2 + y2 = r2So that the equation of our circle is x2 + y2 = 36.
(x - 6)2 + (y + 5)2 = 16
The equation of the circle is: x^2 + y^2 = 81
(x - h)2 + (y - k)2 = r2 where h is the x coordinate of the center of the circle. where k is the y coordinate of the center of the circle. where x is the x coordinate of point (x,y) on the edge of the circle. where y is the y coordinate of point (x,y) on the edge of the circle. Additional assistance here: http://www.mathwarehouse.com/geometry/circle/equation-of-a-circle.php
The equation of circle is (x−h)^2+(y−k)^2 = r^2, where h,k is the center of circle and r is the radius of circle. so, according to question center is origin and radius is 10, therefore, equation of circle is x^2 + y^2 = 100
This starts with the collocation circle to go through the three points on the curve. First write the equation of a circle. Then write three equations that force the collocation circle to go through the three points on the curve. Last, solve the equations for a, b, and r.
Equation of circle: (x-2)^2 +(y+9)^2 = 49
The equation of the circle is: (x+3.2)^2 +(y+2.1)^2 = 18.49