answersLogoWhite

0

one vertex: 3

two vertices: 6

three vertices: 8

total 17

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Geometry

Prove that every tree with two or more vertices is bichromatic?

Prove that the maximum vertex connectivity one can achieve with a graph G on n. 01. Define a bipartite graph. Prove that a graph is bipartite if and only if it contains no circuit of odd lengths. Define a cut-vertex. Prove that every connected graph with three or more vertices has at least two vertices that are not cut vertices. Prove that a connected planar graph with n vertices and e edges has e - n + 2 regions. 02. 03. 04. Define Euler graph. Prove that a connected graph G is an Euler graph if and only if all vertices of G are of even degree. Prove that every tree with two or more vertices is 2-chromatic. 05. 06. 07. Draw the two Kuratowski's graphs and state the properties common to these graphs. Define a Tree and prove that there is a unique path between every pair of vertices in a tree. If B is a circuit matrix of a connected graph G with e edge arid n vertices, prove that rank of B=e-n+1. 08. 09.


How many minimum edges in a Cyclic graph with n vertices?

The term "cyclic graph" is not well-defined. If you mean a graph that is not acyclic, then the answer is 3. That would be the union of a complete graph on 3 vertices and any number of isolated vertices. If you mean a graph that is (isomorphic to) a cycle, then the answer is n. If you are really asking the maximum number of edges, then that would be the triangle numbers such as n (n-1) /2.


What point on the graph could be the fourth vertex of the parallelogram?

the origin is the point in the graph that can be fourth vertex


How many edges are there in a graph with 7 vertices each with degree 2?

Oh, dude, let me break it down for you. So, each vertex has degree 2, which means each vertex is connected to two edges. Since there are 7 vertices, you would have 7 * 2 = 14 edges in total. Easy peasy, right?


How do you find the vertex and graph?

y = - x2 +6x - 5.5

Related Questions

Is the complete graph on 5 vertices planar?

No, the complete graph of 5 vertices is non planar. because we cant make any such complete graph which draw without cross over the edges . if there exist any crossing with respect to edges then the graph is non planar.Note:- a graph which contain minimum one edge from one vertex to another is called as complete graph...


How does the concept of a vertex cover relate to the existence of a Hamiltonian cycle in a graph?

In graph theory, a vertex cover is a set of vertices that covers all edges in a graph. The concept of a vertex cover is related to the existence of a Hamiltonian cycle in a graph because if a graph has a Hamiltonian cycle, then its vertex cover must include at least two vertices from each edge in the cycle. This is because a Hamiltonian cycle visits each vertex exactly once, so the vertices in the cycle must be covered by the vertex cover. Conversely, if a graph has a vertex cover that includes at least two vertices from each edge, it may indicate the potential existence of a Hamiltonian cycle in the graph.


Define walk path and connected graph in an algorithm?

A "walk" is a sequence of alternating vertices and edges, starting with a vertex and ending with a vertex with any number of revisiting vertices and retracing of edges. If a walk has the restriction of no repetition of vertices and no edge is retraced it is called a "path". If there is a walk to every vertex from any other vertex of the graph then it is called a "connected" graph.


Find any Hamiltonian circuit on the graph above. Give your answer as a list of vertices, starting and ending at the same vertex. Example: ABCA?

connecting the vertices in a graph so that the route traveled starts and ends at the same vertex.


What is the maximum number of distinct edges in an undirected graph with N vertices?

Let G be a complete graph with n vertices. Consider the case where n=2. With only 2 vertices it is clear that there will only be one edge. Now add one more vertex to get n = 3. We must now add edges between the two old vertices and the new one for a total of 3 vertices. We see that adding a vertex to a graph with n vertices gives us n more edges. We get the following sequence Edges on a graph with n vertices: 0+1+2+3+4+5+...+n-1. Adding this to itself and dividing by two yields the following formula for the number of edges on a complete graph with n vertices: n(n-1)/2.


What is the role of the vertex cover greedy algorithm in optimizing the selection of vertices to form a minimum vertex cover in a graph?

The vertex cover greedy algorithm helps in selecting the minimum number of vertices in a graph to cover all edges. It works by choosing vertices that cover the most uncovered edges at each step, leading to an efficient way to find a minimum vertex cover.


How can you eulerize a graph to ensure that every vertex has an even degree?

To eulerize a graph and ensure that every vertex has an even degree, you can add new edges to the graph without creating any new vertices. This can be done by finding and adding paths between pairs of odd-degree vertices until all vertices have an even degree.


Show that the star graph is the only bipartiate graph which is a tree?

A star graph, call it S_k is a complete bipartite graph with one vertex in the center and k vertices around the leaves. To be a tree a graph on n vertices must be connected and have n-1 edges. We could also say it is connected and has no cycles. Now a star graph, say S_4 has 3 edges and 4 vertices and is clearly connected. It is a tree. This would be true for any S_k since they all have k vertices and k-1 edges. And Now think of K_1,k as a complete bipartite graph. We have one internal vertex and k vertices around the leaves. This gives us k+1 vertices and k edges total so it is a tree. So one way is clear. Now we would need to show that any bipartite graph other than S_1,k cannot be a tree. If we look at K_2,k which is a bipartite graph with 2 vertices on one side and k on the other,can this be a tree?


Does there exist a simple graph with 7 vertices having degrees 1 3 3 4 5 6 6?

No. Since the graph is simple, none of the vertices connect to themselves - that is, there are no arcs that loop back on themselves. Then the two vertices with degree 6 must connect to all the other vertices. Therefore there can be no vertex with less than two arcs [ to these two vertices]. So a vertex with degree 1 cannot be part of the graph.


What is a veritices?

A vertex (plural: vertices) is a point where two or more lines, edges, or rays meet in geometry. In the context of polygons, a vertex is a corner point where the sides of the shape intersect. In three-dimensional shapes, such as polyhedra, vertices are the points where the edges converge. Vertices are essential in graph theory as well, representing nodes in a graph.


What is an adjacency list in the context of data structures and how is it used to represent relationships between vertices in a graph?

An adjacency list is a data structure used to represent relationships between vertices in a graph. It consists of a list of vertices, where each vertex has a list of its neighboring vertices. This allows for efficient storage and retrieval of information about the connections between vertices in a graph.


What is dominator coloring graph give an example?

A dominator coloring is a coloring of the vertices of a graph such that every vertex is either alone in its color class or adjacent to all vertices of at least one other class.