ABC
The real answer is Bc . Hate these @
C is the midpoint of Ab . then AC = BC. So AC= CB.
If point b is in between points a and c, then ab +bc= ac by the segment addition postulate...dont know if that was what you were looking for... but that is how i percieved that qustion.
the midpoint of AB.
Zero.For instance, given a right triangle with points ABC. where AC is the hypotenuse, then to find the angle between AB, we take sin(AB/AC), where AB is the distance between points A and B, and AC is the distance between A and C. If we replace AB with 0, the equation would be sin(0/AC). Sine of zero is always zero.
You could conclude that B lies between A and C.
If 2 segments have the same length they are known as 'congruent segments' IE: segment AB=segment AC (or AB=AC) then AB @ AC (or AB is congruent to AC)
yes because ab plus bc is ac
The real answer is Bc . Hate these @
C is the midpoint of Ab . then AC = BC. So AC= CB.
If point b is in between points a and c, then ab +bc= ac by the segment addition postulate...dont know if that was what you were looking for... but that is how i percieved that qustion.
the midpoint of AB.
AB + AC + BC = 48 AB + (AB +9) + (AB + 9 + 3) = 48 Solve and AB = 9 So AB = 9, AC = 18 and BC = 21
It can be simplified to -c-a-ac
If line BE is the bisector of segment AC, it means that it divides AC into two equal parts. Given that AB is 7 units, it implies that the length of AC is twice the length of AB. Therefore, AC is 2 × 7 = 14 units.
All the trigonometric functions are derived from the right angled triangle. If we consider the three sides (AB, BC, CA) of a triangle and the included angle. There is a possibility of getting six functions based on the ratios like AB/AC, BC/AC, AB/BC, BC/AB, AC/BC, AC/AB . So we will have six trigonometric functions
C is not on the line AB.