There are so far 8 common methods to solve quadratic equations:GraphingFactoring FOIL methodCompleting the square.Using the quadratic formula (derived from algebraic manipulation of "completing the square" method).The Diagonal Sum Method. It quickly and directly gives the 2 real roots in the form of 2 fractions. In fact, it can be considered as a shortcut of the factoring method. It uses the Rule of Signs for Real Roots in its solving process. When a= 1, it can give the 2 real roots quickly without factoring. Example. Solve x^2 - 39x + 108 = 0. The Rule of Signs indicates the 2 real roots are both positive. Write the factor-sets of c = 108. They are: (1, 108), (2, 54), (3, 36)...Stop! This sum is 36 + 3 = 39 = -b. The 2 real roots are 3 and 36. No needs for factoring! When a is not one, this new method selects all probable root-pairs, in the form of 2 fractions. Then it applies a very simple formula to see which root-pair is the answer. Usually, it requires less than 3 trials. If this new method fails, then this given quadratic equation can not be factored, and consequently the quadratic formula must be used. Please see book titled:"New methods for solving quadratic equations and inequalities" (Amazon e-book 2010).The Bluma MethodThe factoring AC Method (Youtube). This method is considerably improved by a "new and improved AC Method", recently introduced on Google or Yahoo Search.The new Transforming Method, recently introduced, that is may be the best and fastest method to solve quadratic equations. Its strong points are: simple, fast, systematic, no guessing, no factoring by grouping, and no solving the binomials. To know this new method, read the articles titled:"Solving quadratic equations by the new Transforming Method" on Google or Yahoo Search.BEST METHODS TO SOLVE QUADRATIC EQUATIONS. A. When the equation can't be factored, the best choice would be the quadratic formula. How to know if the equation can't be factored? There are 2 ways:1. Start solving by the new Transforming Method in composing factor pairs of a*c (or c). If you can't find the pair whose sum equals to (-b), or b, then the equation can't be factored.2. Calculate the Discriminant D = b^2 - 4ac. If D isn't a perfect square, then the equation can't be factored.B. When the equation can be factored, the new Transforming Method would be the best choice.
General form of a quadratic equation is: ax2+b+c = 0 The discriminant is: b2-4ac If the discriminant equals zero then there are two equal roots If the discriminant is greater than zero then there are two different roots If the discriminant is less than zero then there are no real roots
If the equations are in y= form, set the two equations equal to each other. Then solve for x. The x value that you get is the x coordinate of the intersection point. To find the y coordinate of the intersection point, plug the x you just got into either equation and simplify so that y= some number. There are other methods of solving a system of equations: matrices, substitution, elimination, and graphing, but the above method is my favorite!
The vertex form for a quadratic equation is y=a(x-h)^2+k.
Let n be the number of sides: 1/2*(n2-3n) = diagonals 1/2*(n2-3n) = 902 Multiply both sides by 2 and form a quadratic equation: n2-3n-1804 = 0 Solving the above by means of the quadratic equation formula gives a positive value for n as 44 Therefore the polygon has 44 sides
The Factor-Factor Product Relationship is a concept in algebra that relates the factors of a quadratic equation to the roots or solutions of the equation. It states that if a quadratic equation can be factored into the form (x - a)(x - b), then the roots of the equation are the values of 'a' and 'b'. This relationship is crucial in solving quadratic equations and understanding the behavior of their roots.
Start with a quadratic equation in the form � � 2 � � � = 0 ax 2 +bx+c=0, where � a, � b, and � c are constants, and � a is not equal to zero ( � ≠ 0 a =0).
The standard form of a quadratic equation is: ax^2 + bx + c = 0. Depending on the values of the constants (a, b, and c), a quadratic equation may have 2 real roots, one double roots, or no real roots.There are many "special cases" of quadratic equations.1. When a = 1, the equation is in the form: x^2 + bx + c = 0. Solving it becomes solving a popular puzzle: find 2 numbers knowing their sum (-b) and their product (c). If you use the new Diagonal Sum Method (Amazon e-book 2010), solving is fast and simple.Example: Solve x^2 + 33x - 108 = 0.Solution. Roots have opposite signs. Write factor pairs of c = -108. They are: (-1, 108),(-2, 54),(-3, 36)...This sum is -3 + 36 = 33 = -b. The 2 real roots are -3 and 36. There is no needs for factoring.2. Tips for solving 2 special cases of quadratic equations.a. When a + b + c = 0, one real root is (1) and the other is (c/a).Example: the equation 5x^2 - 7x + 2 = 0 has 2 real roots: 1 and 2/5b. When a - b + c = 0, one real roots is (-1) and the other is (-c/a)Example: the equation 6x^2 - 3x - 9 = 0 has 2 real roots: (-1) and (9/6).3. Quadratic equations that can be factored.The standard form of a quadratic equation is ax^2 + bx + c = 0. When the Discriminant D = b^2 - 4ac is a perfect square, this equation can be factored into 2 binomials in x: (mx + n)(px + q)= 0. Solving the quadratic equation results in solving these 2 binomials for x. Students should master how to use this factoring method instead of boringly using the quadratic formula.When a given quadratic equation can be factored, there are 2 best solving methods to choose:a. The "factoring ac method" (You Tube) that determines the values of the constants m, n, p, and q of the 2 above mentioned binomials in x.b. The Diagonal Sum Method (Amazon ebook 2010) that directly obtains the 2 real roots without factoring. It is also considered as "The c/a method", or the shortcut of the factoring method. See the article titled" Solving quadratic equations by the Diagonal Sum Method" on this website.4. Quadratic equations that have 2 roots in the form of 2 complex numbers.When the Discriminant D = b^2 - 4ac < 0, there are 2 roots in the form of 2 complex numbers.5. Some special forms of quadratic equations:- quadratic equations with parameters: x^2 + mx - 7 + 0 (m is a parameter)- bi-quadratic equations: x^4 - 5x^2 + 4 = 0- equations with rational expression: (ax + b)/(cx + d) = (ex + f)- equations with radical expressions.
Write the quadratic equation in the form ax2 + bx + c = 0 then the roots (solutions) of the equation are: [-b ± √(b2 - 4*a*c)]/(2*a)
Equations are not linear when they are quadratic equations which are graphed in the form of a parabola
In general, there are two steps in solving a given quadratic equation in standard form ax^2 + bx + c = 0. If a = 1, the process is much simpler. The first step is making sure that the equation can be factored? How? In general, it is hard to know in advance if a quadratic equation is factorable. I suggest that you use first the new Diagonal Sum Method to solve the equation. It is fast and convenient and can directly give the 2 roots in the form of 2 fractions. without having to factor the equation. If this method fails, then you can conclude that the equation is not factorable, and consequently, the quadratic formula must be used. See book titled:" New methods for solving quadratic equations and inequalities" (Trafford Publishing 2009) The second step is solving the equation by the quadratic formula. This book also introduces a new improved quadratic formula, that is easier to remember by relating the formula to the x-intercepts with the parabola graph of the quadratic function.
There are 5 existing methods in solving quadratic equations. For the first 4 methods (quadratic formula, factoring, graphing, completing the square) you can easily find them in algebra books. I would like to explain here the new one, the Diagonal Sum Method, recently presented in book titled:"New methods for solving quadratic equations and inequalities" (Trafford 2009). It directly gives the 2 roots in the form of 2 fractions, without having to factor the equation. The innovative concept of the method is finding 2 fractions knowing their Sum (-b/a) and their Product (c/a). It is very fast, convenient and is applicable whenever the given quadratic equation is factorable. In general, it is hard to tell in advance if a given quadratic equation can be factored. However, if this new method fails to find the answer, then we can conclude that the equation can not be factored, and consequently, the quadratic formula must be used. This new method can replace the trial-and-error factoring method since it is faster, more convenient, with fewer permutations and fewer trials.
Why are Quadratic equations, which are expressed in the form of ax2 + bx + c = 0, where a does not equal 0,
Put the equation into ax²+bx+c=0 form. The discriminant is b²-4ac. If it is negative, there are no real roots. If it is 0, there is one real root. If it is positive, there are 2 real roots. ■
Suppose the roots a quadratic, in the form ax2 + bx + c = 0, are p and q. Then p + q = -b/a and pq = c/a
Write the quadratic equation in the form ax2 + bx + c = 0 The roots are equal if and only if b2 - 4ac = 0. The expression, b2-4ac is called the [quadratic] discriminant.
None, if the coefficients of the quadratic are in their lowest form.