The altitude of an equilateral triangle is (√3)/2*a. where 'a' is the side of the triangle. It can be just find by giving a perpendicular to the base of the triangle, the base of the triangle become a/2 and one side is a. so by applying Pythagoras theorem we will get the desired formula.
Chat with our AI personalities
For the equilateral triangle in Euclidean space(i.e, the triangles you see in general) median is the same as its altitude. So, both are of equal length.
The altitude/height of an equilateral triangle can be calculated by taking the perpendicular bisector of any side. This line will bisect its opposite angle forming two congruent right angled triangles. The side length of the original equilateral triangle is the hypotenuse and the short leg of right angled triangle is half the hypotenuse. By Pythagoras' Theorem : 42 = 22 + L2.........where L is the length of the altitude. L2 = 42 - 22 = 16 - 4 = 12 L = √12 = 2√3 = 3.464 (3dp)
is called an equilateral triangle
9.794747317 m (with the help of Pythagoras' theorem)
Using Pythagoras' theorem it works out as 10.5 units of measurement