answer = 1 - probability you do get two green*
* = binominal distribution f(k;n,p) = f(2;2,1/4)
the probability is you'd get a green marble any other color is impossible. So, the probability is certain
To determine the probability of getting a green marble, you need to know the total number of marbles and the number of green marbles specifically. The probability is calculated by dividing the number of green marbles by the total number of marbles. For example, if there are 5 green marbles out of 20 total marbles, the probability would be 5/20, which simplifies to 1/4 or 25%.
your probability would be 13/13. you would have a 100 percent chance of getting a green marble
To calculate the probability of not drawing a green marble, first determine the total number of marbles and the number of green marbles. The probability of not drawing a green marble is then given by the ratio of the number of non-green marbles to the total number of marbles. This can be expressed as: [ P(\text{not green}) = \frac{\text{Number of non-green marbles}}{\text{Total number of marbles}}. ] Without specific numbers, the exact probability cannot be computed.
To find the experimental probability of choosing a green marble, first calculate the total number of marbles: 7 red + 9 yellow + 14 green + 10 purple = 40 marbles. The probability of choosing a green marble is the number of green marbles divided by the total number of marbles, which is 14 green / 40 total = 0.35. Thus, the experimental probability of choosing a green marble is 0.35, or 35%.
the probability is you'd get a green marble any other color is impossible. So, the probability is certain
If there is 3 blue 2 red and 4 green. What is the probability of getting green?
The probability is 0.625
To calculate the probability of not drawing two green marbles, we first find the probability of drawing a green marble on the first draw, which is 5/20 since there are 5 green marbles out of a total of 20 marbles. The probability of not drawing a green marble on the first draw is 1 - 5/20 = 15/20. Since the marbles are replaced, the probability of not drawing a green marble on the second draw is also 15/20. Therefore, the probability of not drawing two green marbles is (15/20) * (15/20) = 225/400 = 9/16 or 56.25%.
To determine the probability of getting a green marble, you need to know the total number of marbles and the number of green marbles specifically. The probability is calculated by dividing the number of green marbles by the total number of marbles. For example, if there are 5 green marbles out of 20 total marbles, the probability would be 5/20, which simplifies to 1/4 or 25%.
your probability would be 13/13. you would have a 100 percent chance of getting a green marble
About a 74% estimated probability of green,
To calculate the probability of not drawing a green marble, first determine the total number of marbles and the number of green marbles. The probability of not drawing a green marble is then given by the ratio of the number of non-green marbles to the total number of marbles. This can be expressed as: [ P(\text{not green}) = \frac{\text{Number of non-green marbles}}{\text{Total number of marbles}}. ] Without specific numbers, the exact probability cannot be computed.
To find the experimental probability of choosing a green marble, first calculate the total number of marbles: 7 red + 9 yellow + 14 green + 10 purple = 40 marbles. The probability of choosing a green marble is the number of green marbles divided by the total number of marbles, which is 14 green / 40 total = 0.35. Thus, the experimental probability of choosing a green marble is 0.35, or 35%.
There are 16 marbles total and 7 green ones, so the probability is 7/16.
You find out how many choices there are in a spinner and then you take what it wants you to find the probability of and tur it into a fraction For example: You have a spinner with 4 triangles in it....2 are red and 2 are green,What is the probability of landing on a green triangle 2 out of 4
This is a law of addition probability which states that the probability of A or B equals the probability of A plus the probability of B minus the probability of A and B. Written in mathematical terms, the equation is: P(AorB) = P(A) + P(B) - P(AnB) where P(AnB) = 0 (since you can not pull out a green and black ball at the same time). Let P(A) = Probability of drawing the green ball & let P(B) = Probability of drawing the black ball. Total outcomes is 17. So, P(A) = 4/17 & P(B) = 6/17. Therefore P(green or black) = 4/17 + 6/17 = 10/17.