a resultant vector not only the resultant of two or three vector.
it is the resultant direction of two or many vectors.(let us push an object with same force in opposite direction the resultant is zero and if we push in same direction the force will double.if we pull a object with same force in x and y direction the resultant force in 45 degrees to x axis)
The Resultant Vector minus the other vector
The resultant vector is the vector that 'results' from adding two or more vectors together. This vector will create some angle with the x -axis and this is the angle of the resultant vector.
the difference between resultant vector and resolution of vector is that the addition of two or more vectors can be represented by a single vector which is termed as a resultant vector. And the decomposition of a vector into its components is called resolution of vectors.
by method of finding resultant
If the scalar is > 1 the resultant vector will be larger and in the same direction. = 1 the resultant vector will be the same as the original vector. between 0 and 1 the resultant vector will be smaller and in the same direction. = 0 the resultant vector will be null. If the scalar is less than 0, then the pattern will be the same as above except that the direction of the resultant will be reversed.
The Resultant Vector minus the other vector
A resultant on a vector diagram is drawn by connecting the tail of the first vector to the head of the second vector. Then, the resultant vector is drawn from the tail of the first vector to the head of the second vector. The resultant vector represents the sum or difference of the two original vectors.
Oh, dude, okay, so like, a resultant vector is the overall effect of two or more vectors combined, while a component vector is just one of the vectors that make up the resultant. It's like saying the whole pizza is the resultant, and the pepperoni and cheese slices are the component vectors. So, basically, the resultant is the big picture, and the components are just the pieces that make it up.
The resultant vector is the vector that 'results' from adding two or more vectors together. This vector will create some angle with the x -axis and this is the angle of the resultant vector.
the difference between resultant vector and resolution of vector is that the addition of two or more vectors can be represented by a single vector which is termed as a resultant vector. And the decomposition of a vector into its components is called resolution of vectors.
by method of finding resultant
A resutant vector
Equilibrant vector is the opposite of resultant vector, they act in opposite directions to balance each other.
If the scalar is > 1 the resultant vector will be larger and in the same direction. = 1 the resultant vector will be the same as the original vector. between 0 and 1 the resultant vector will be smaller and in the same direction. = 0 the resultant vector will be null. If the scalar is less than 0, then the pattern will be the same as above except that the direction of the resultant will be reversed.
A resultant vector is one vector which can replace all the other vectors and produce the same effect.
adding two or more vectors
Vector addition is the operation that gives a resultant vector when two or more vectors are added together. The resultant vector represents the combination of the individual vectors' magnitudes and directions.