Consider two vectors A and B Represented by directionel lines OM and ON respectively
now add the two vectors by head to tail tail of vector addition now resolve it into rectangular components as shown in figure
Chat with our AI personalities
Spliting up of vector into its rectangular components is called resolution of vector
A unit vector has a length (magnitude) equal to 1 (one unit). A rectangular vector is a coordinate vector specified by components that define a rectangle (or rectangular prism in three dimensions, and similar shapes in greater dimensions). The starting point and terminal point of the vector lie at opposite ends of the rectangle (or prism, etc.).
Vector addition does not follow the familiar rules of addition as applied to addition of numbers. However, if vectors are resolved into their components, the rules of addition do apply for these components. There is a further advantage when vectors are resolved along orthogonal (mutually perpendicular) directions. A vector has no effect in a direction perpendicular to its own direction.
Any vector can be "decomposed" into components along any two non-parallel directions. In particular, a vector may be decomposed along a pair (more in higher dimensional spaces) of orthogonal directions. Orthogonal means at right angles and so you have the original vector split up into components that are at right angles to each other - for example, along the x-axis and the y-axis. These components are the rectangular components of the original vector. The reason for doing this is that vectors acting at right angles to one another do not affect one another.
the difference between resultant vector and resolution of vector is that the addition of two or more vectors can be represented by a single vector which is termed as a resultant vector. And the decomposition of a vector into its components is called resolution of vectors.