inscribed angle
This is the definition of an inscribed angle in geometry. An inscribed angle is formed by two chords in a circle that also share a common point called the vertex.
The maximum.
The equation of a parabola that opens left or right with its vertex at the point ((h, v)) is given by ((y - v)^2 = 4p(x - h)), where (p) is the distance from the vertex to the focus. If (p > 0), the parabola opens to the right, and if (p < 0), it opens to the left.
maximum point :)
The equation that describes a parabola that opens up or down with its vertex at the point (h, v) is given by the vertex form of a quadratic equation: ( y = a(x - h)^2 + v ), where ( a ) determines the direction and width of the parabola. If ( a > 0 ), the parabola opens upwards, while if ( a < 0 ), it opens downwards.
This is the definition of an inscribed angle in geometry. An inscribed angle is formed by two chords in a circle that also share a common point called the vertex.
Opening up, the vertex is a minimum.
The maximum.
The equation of a parabola that opens left or right with its vertex at the point ((h, v)) is given by ((y - v)^2 = 4p(x - h)), where (p) is the distance from the vertex to the focus. If (p > 0), the parabola opens to the right, and if (p < 0), it opens to the left.
The maximum point.
maximum point :)
maximum point :)
The equation that describes a parabola that opens up or down with its vertex at the point (h, v) is given by the vertex form of a quadratic equation: ( y = a(x - h)^2 + v ), where ( a ) determines the direction and width of the parabola. If ( a > 0 ), the parabola opens upwards, while if ( a < 0 ), it opens downwards.
The standard form of the equation of a parabola that opens up or down is given by ( y = a(x - h)^2 + k ), where ( (h, k) ) is the vertex of the parabola and ( a ) determines the direction and width of the parabola. If ( a > 0 ), the parabola opens upward, while if ( a < 0 ), it opens downward. The vertex form emphasizes the vertex's position and the effect of the coefficient ( a ) on the parabola's shape.
To determine if a parabola opens up or down, look at the coefficient of the quadratic term in its equation, typically in the form (y = ax^2 + bx + c). If the coefficient (a) is positive, the parabola opens upwards; if (a) is negative, it opens downwards. You can also visualize the vertex: if the vertex is the lowest point, it opens up, and if it's the highest point, it opens down.
The equation that describes a parabola opening up or down with its vertex at the point ((h, v)) is given by (y = a(x - h)^2 + v), where (a) is a non-zero constant. If (a > 0), the parabola opens upwards, while if (a < 0), it opens downwards. The vertex form allows easy identification of the vertex and the direction of the parabola's opening.
The terminal side of an angle is the line that extends from the vertex of the angle, typically measured in standard position where the initial side lies along the positive x-axis. As the angle opens, the terminal side moves counterclockwise for positive angles and clockwise for negative angles. The terminal side can be located in any of the four quadrants of the Cartesian plane, depending on the angle's measure.