true
overlap
The answer depends on which area is shaded for each inequality. I always teach pupils to shade the unwanted or non-feasible region. That way the solution is in the unshaded area. This is much easier to identify than do distinguish between a region which is shaded three times and another which is shaded four times.
To determine the graph that represents the solution set of a system of inequalities, you need to plot each inequality on a coordinate plane. The solution set will be the region where the shaded areas of all inequalities overlap. Typically, the boundaries of the inequalities will be represented by solid lines (for ≤ or ≥) or dashed lines (for < or >). Identifying the correct graph involves checking which regions satisfy all the inequalities simultaneously.
Systems of inequalities in n variables with create an n-dimensional shape in n-dimensional space which is called the feasible region. Any point inside this region will be a solution to the system of inequalities; any point outside it will not. If all the inequalities are linear then the shape will be a convex polyhedron in n-space. If any are non-linear inequalities then the solution-space will be a complicated shape. As with a system of equations, with continuous variables, there need not be any solution but there can be one or infinitely many.
A solution to a linear inequality in two variables is an ordered pair (x, y) that makes the inequality a true statement. The solution set is the set of all solutions to the inequality. The solution set to an inequality in two variables is typically a region in the xy-plane, which means that there are infinitely many solutions. Sometimes a solution set must satisfy two inequalities in a system of linear inequalities in two variables. If it does not satisfy both inequalities then it is not a solution.
overlap
The answer depends on which area is shaded for each inequality. I always teach pupils to shade the unwanted or non-feasible region. That way the solution is in the unshaded area. This is much easier to identify than do distinguish between a region which is shaded three times and another which is shaded four times.
An inequality determines a region of space in which the solutions for that particular inequality. For a system of inequalities, these regions may overlap. The solution set is any point in the overlap. If the regions do not overlap then there is no solution to the system.
To determine the graph that represents the solution set of a system of inequalities, you need to plot each inequality on a coordinate plane. The solution set will be the region where the shaded areas of all inequalities overlap. Typically, the boundaries of the inequalities will be represented by solid lines (for ≤ or ≥) or dashed lines (for < or >). Identifying the correct graph involves checking which regions satisfy all the inequalities simultaneously.
The answer depends on which area is shaded for each inequality. I always teach pupils to shade the unwanted or non-feasible region. That way the solution is in the unshaded area. This is much easier to identify than do distinguish between a region which is shaded three times and another which is shaded four times.
In 2-dimensional space, an equality could be represented by a line. A set of equalities would be represented by a set of lines. If these lines intersected at a single point, that point would be the solution to the set of equations. With inequalities, instead of a line you get a region - one side of the line representing the corresponding equality (or the other). The line, itself, may be included or excluded. Each inequality can be represented by a region and, if these regions overlap, any point within that sub-region is a solution to the system of inequalities.
Systems of inequalities in n variables with create an n-dimensional shape in n-dimensional space which is called the feasible region. Any point inside this region will be a solution to the system of inequalities; any point outside it will not. If all the inequalities are linear then the shape will be a convex polyhedron in n-space. If any are non-linear inequalities then the solution-space will be a complicated shape. As with a system of equations, with continuous variables, there need not be any solution but there can be one or infinitely many.
It represents the solution set.
A solution to a linear inequality in two variables is an ordered pair (x, y) that makes the inequality a true statement. The solution set is the set of all solutions to the inequality. The solution set to an inequality in two variables is typically a region in the xy-plane, which means that there are infinitely many solutions. Sometimes a solution set must satisfy two inequalities in a system of linear inequalities in two variables. If it does not satisfy both inequalities then it is not a solution.
Each inequality divides the Cartesian plane into two parts. On one side of the line the inequality is satisfied while on the other it is not. A system of inequalities divides the plane into a number of such parts and the intersection of these parts in which the inequalities are true defines the the required region.
Each linear equation is a line that divides the coordinate plane into three regions: one "above" the line, one "below" and the line itself. For a linear inequality, the corresponding equality divides the plane into two, with the line itself belonging to one or the other region depending on the nature of the inequality. A system of linear inequalities may define a polygonal region (a simplex) that satisfies ALL the inequalities. This area, if it exists, is called the feasible region and comprises all possible solutions of the linear inequalities. In linear programming, there will be an objective function which will restrict the feasible region to a vertex or an edge of simplex. There may also be a further constraint - integer programming - where the solution must comprise integers. In this case, the feasible region will comprise all the integer grid-ponits with the simplex.
Your question asks about "each inequalities" which is grammatically impossible since "each" implies singular whereas inequalities implies plural. Consequently it is not clear whether you mean "each inequality" or "each of a set of inequalities". In either case the set is called the feasible region, or the 2-dimensional solution set.