answersLogoWhite

0

What else can I help you with?

Related Questions

Discontinuous function in fourier series?

yes a discontinuous function can be developed in a fourier series


Can a discontinuous function can be developed in the Fourier series?

Yes. For example: A square wave has a Fourier series.


Can a discontinuous function be developed in a Fourier series?

Yes, a Fourier series can be used to approximate a function with some discontinuities. This can be proved easily.


Can a discontinuous function be developed in the fourier series?

yes it can, if you know how to use or have mathematica have a look at this demo http://demonstrations.wolfram.com/ApproximationOfDiscontinuousFunctionsByFourierSeries/


Is the fnction in fourier series periodic?

Yes, a Fourier series represents a periodic function. It decomposes a periodic function into a sum of sine and cosine terms, each of which has a specific frequency. The resulting series will also be periodic, with the same period as the original function. If the original function is not periodic, it can still be approximated by a Fourier series over a finite interval, but the series itself will exhibit periodic behavior.


Is the infinite sum of continuous function continuous?

An infinite sum of continuous functions does not have to be continuous. For example, you should be able to construct a Fourier series that converges to a discontinuous function.


What is the difference between fourier series and discrete fourier transform?

Fourier series is the sum of sinusoids representing the given function which has to be analysed whereas discrete fourier transform is a function which we get when summation is done.


Can every function be expanded in fouriers series?

no every function cannot be expressed in fourier series... fourier series can b usd only for periodic functions.


What is the Fourier series triangle function?

sinc^2(w)


What is the difference between fourier series and fourier transform with real life example please?

A Fourier series is a set of harmonics at frequencies f, 2f, 3f etc. that represents a repetitive function of time that has a period of 1/f. A Fourier transform is a continuous linear function. The spectrum of a signal is the Fourier transform of its waveform. The waveform and spectrum are a Fourier transform pair.


What is parseval theorem in fourier series?

Parseval's theorem in Fourier series states that the total energy of a periodic function, represented by its Fourier series, is equal to the sum of the squares of its Fourier coefficients. Mathematically, for a function ( f(t) ) with period ( T ), the theorem expresses that the integral of the square of the function over one period is equal to the sum of the squares of the coefficients in its Fourier series representation. This theorem highlights the relationship between the time domain and frequency domain representations of the function, ensuring that energy is conserved across these domains.


What is harmonic as applied to fourier series?

When we do a Fourier transformation of a function we get the primary term which is the fundamental frequency and amplitude of the Fourier series. All the other terms, with higher frequencies and lower amplitudes, are the harmonics.