yes it can, if you know how to use or have mathematica have a look at this demo http://demonstrations.wolfram.com/ApproximationOfDiscontinuousFunctionsByFourierSeries/
Yes. For example: A square wave has a Fourier series.
Yes it can.
An infinite sum of continuous functions does not have to be continuous. For example, you should be able to construct a Fourier series that converges to a discontinuous function.
Fourier series is the sum of sinusoids representing the given function which has to be analysed whereas discrete fourier transform is a function which we get when summation is done.
A Fourier series is a set of harmonics at frequencies f, 2f, 3f etc. that represents a repetitive function of time that has a period of 1/f. A Fourier transform is a continuous linear function. The spectrum of a signal is the Fourier transform of its waveform. The waveform and spectrum are a Fourier transform pair.
yes a discontinuous function can be developed in a fourier series
Yes. For example: A square wave has a Fourier series.
Yes, a Fourier series can be used to approximate a function with some discontinuities. This can be proved easily.
Yes it can.
Yes, a Fourier series can represent a function that is discontinuous. While the series converges to the function at points of continuity, at points of discontinuity, it converges to the average of the left-hand and right-hand limits. This phenomenon is known as the Gibbs phenomenon, where the series may exhibit oscillations near the discontinuities. Despite these oscillations, the Fourier series still provides a useful approximation of the function.
An infinite sum of continuous functions does not have to be continuous. For example, you should be able to construct a Fourier series that converges to a discontinuous function.
Fourier series is the sum of sinusoids representing the given function which has to be analysed whereas discrete fourier transform is a function which we get when summation is done.
no every function cannot be expressed in fourier series... fourier series can b usd only for periodic functions.
To draw a graph for a Fourier series, first, calculate the Fourier coefficients by integrating the function over one period. Then, construct the Fourier series by summing the sine and cosine terms using these coefficients. Plot the resulting function over the desired interval, ensuring to include enough terms in the series to capture the function's behavior accurately. Finally, compare the Fourier series graph against the original function to visualize the approximation.
Yes, a Fourier series represents a periodic function. It decomposes a periodic function into a sum of sine and cosine terms, each of which has a specific frequency. The resulting series will also be periodic, with the same period as the original function. If the original function is not periodic, it can still be approximated by a Fourier series over a finite interval, but the series itself will exhibit periodic behavior.
sinc^2(w)
A Fourier series is a set of harmonics at frequencies f, 2f, 3f etc. that represents a repetitive function of time that has a period of 1/f. A Fourier transform is a continuous linear function. The spectrum of a signal is the Fourier transform of its waveform. The waveform and spectrum are a Fourier transform pair.