answersLogoWhite

0

sinc^2(w)

User Avatar

Wiki User

16y ago

What else can I help you with?

Continue Learning about Other Math

How do you find the inverse Fourier transform from Fourier series coefficients?

To find the inverse Fourier transform from Fourier series coefficients, you first need to express the Fourier series coefficients in terms of the complex exponential form. Then, you can use the inverse Fourier transform formula, which involves integrating the product of the Fourier series coefficients and the complex exponential function with respect to the frequency variable. This process allows you to reconstruct the original time-domain signal from its frequency-domain representation.


What is the fourier transform of Tan function?

tanx = 2*(sin2x - sin4x + sin6x - ... )However, be warned that this series is very slow to converge.


What is the Fourier Series for x sinx from -pi to pi?

The word sine, not sinx is the trigonometric function of an angle. The answer to the math question what is the four series for x sine from -pi to pi, the answer is 24.3621.


Application of fourier transform?

the main application of fourier transform is the changing a function from frequency domain to time domain, laplaxe transform is the general form of fourier transform .


What is the history of fourier series?

It is quite complicated, and starts before Fourier. Trigonometric series arose in problems connected with astronomy in the 1750s, and were tackled by Euler and others. In a different context, they arose in connection with a vibrating string (e.g. a violin string) and solutions of the wave equation.Still in the 1750s, a controversy broke out as to what curves could be represented by trigonometric series and whether every solution to the wave equation could be represented as the sum of a trigonometric series; Daniel Bernoulli claimed that every solution could be so represented and Euler claimed that arbitrary curves could not necessarily be represented. The argument rumbled on for 20 years and dragged in other people, including Laplace. At that time the concepts were not available to settle the problem.Fourier worked on the heat equation (controlling the diffusion of heat in solid bodies, for example the Earth) in the early part of the 19th century, including a major paper in 1811 and a book in 1822. Fourier had a broader notion of function than the 18th-century people, and also had more convincing examples.Fourier's work was criticised at the time, and his insistence that discontinuous functions could be represented by trigonometric series contradicted a theorem in a textbook by the leading mathematician of the time, Cauchy.Nonetheless Fourier was right; Cauchy (and Fourier, and everyone else at that time) was missing the idea of uniform convergence of a series of functions. Fourier's work was widely taken up, and also the outstanding problems (just which functions can be represented by Fourier series?; how different can two functions be if they have the same Fourier series?) were slowly solved.Source: Morris Kline, Mathematical Thought from Ancient to Modern Times, Oxford University Press, 1972, pages 478-481, 502-514, 671-678,and 964.

Related Questions

Discontinuous function in fourier series?

yes a discontinuous function can be developed in a fourier series


What is the difference between fourier series and discrete fourier transform?

Fourier series is the sum of sinusoids representing the given function which has to be analysed whereas discrete fourier transform is a function which we get when summation is done.


Can a discontinuous function can be developed in the Fourier series?

Yes. For example: A square wave has a Fourier series.


Can a discontinuous function be developed in a Fourier series?

Yes, a Fourier series can be used to approximate a function with some discontinuities. This can be proved easily.


Can every function be expanded in fouriers series?

no every function cannot be expressed in fourier series... fourier series can b usd only for periodic functions.


How do you draw graph for Fourier series?

To draw a graph for a Fourier series, first, calculate the Fourier coefficients by integrating the function over one period. Then, construct the Fourier series by summing the sine and cosine terms using these coefficients. Plot the resulting function over the desired interval, ensuring to include enough terms in the series to capture the function's behavior accurately. Finally, compare the Fourier series graph against the original function to visualize the approximation.


Can a discontinuous function be approximated by a fourier series?

Yes it can.


Is the fnction in fourier series periodic?

Yes, a Fourier series represents a periodic function. It decomposes a periodic function into a sum of sine and cosine terms, each of which has a specific frequency. The resulting series will also be periodic, with the same period as the original function. If the original function is not periodic, it can still be approximated by a Fourier series over a finite interval, but the series itself will exhibit periodic behavior.


What is the difference between fourier series and fourier transform with real life example please?

A Fourier series is a set of harmonics at frequencies f, 2f, 3f etc. that represents a repetitive function of time that has a period of 1/f. A Fourier transform is a continuous linear function. The spectrum of a signal is the Fourier transform of its waveform. The waveform and spectrum are a Fourier transform pair.


What is parseval theorem in fourier series?

Parseval's theorem in Fourier series states that the total energy of a periodic function, represented by its Fourier series, is equal to the sum of the squares of its Fourier coefficients. Mathematically, for a function ( f(t) ) with period ( T ), the theorem expresses that the integral of the square of the function over one period is equal to the sum of the squares of the coefficients in its Fourier series representation. This theorem highlights the relationship between the time domain and frequency domain representations of the function, ensuring that energy is conserved across these domains.


What is harmonic as applied to fourier series?

When we do a Fourier transformation of a function we get the primary term which is the fundamental frequency and amplitude of the Fourier series. All the other terms, with higher frequencies and lower amplitudes, are the harmonics.


Can a fourier series be discontinous?

Yes, a Fourier series can represent a function that is discontinuous. While the series converges to the function at points of continuity, at points of discontinuity, it converges to the average of the left-hand and right-hand limits. This phenomenon is known as the Gibbs phenomenon, where the series may exhibit oscillations near the discontinuities. Despite these oscillations, the Fourier series still provides a useful approximation of the function.