The domain is the possible values that can be input into the function and produce a real number output.
In algebra, the domain consists of all possible values for the x variable that could make the function work. The range is all of the possible values of the function, using each number in the domain.
An irrational number.
Yes, every irrational number is also a real number. Real numbers include all the numbers on the number line, which consists of both rational and irrational numbers. Rational numbers can be expressed as fractions, whereas irrational numbers cannot be expressed as simple fractions. So, while all irrational numbers are real numbers, not all real numbers are irrational—some are rational.
Yes, for some functions A, and not for others.
It depends on its domain.
A number does not have a range and domain, a function does.
f(x) = 1 if x is rational f(x) = 0 if x is irrational But there is no specific question about this function. It is a well defined function whose domain is the real numbers and whose codomain consists of the two values, 0 and 1. It is a function with infinitely many discontinuities, and an integral which is 0.
The domain is the possible values that can be input into the function and produce a real number output.
f(x)=5x Domain is any number for x that will provide a real number for f(x). In this function, x can be any real number, and f(x) will be a real number. Thus domain is all real numbers.
Yes. A function is a rule to assign a value based on some other value; you can make the function equal to a constant for all values of a variable "x", or you can make it equal to a few values. Commonly used functions of this type include the integer function (take the integer part of a number), which, if you consider a finite domain (for example, all numbers from 0 to 10), has an infinite number of values in the domain, but only a few specific values in its range; and the sign function.
no
true
Actually the product of a nonzero rational number and another rational number will always be rational.The product of a nonzero rational number and an IRrational number will always be irrational. (You have to include the "nonzero" caveat because zero times an irrational number is zero, which is rational)
yes it is a function because sequence defined as "a function whose domain is set of natural number"
Any real number is either rational or irrational. The rational ones are the ones that can be written in the form a/b where and b are integers and b does not equal 0. The irrational ones are all the other ones. If you expand your domain to include numbers other than the real numbers, like the imaginary numbers for example, there is no definition of "rational" or "irrational" for the non-real numbers. Zero is a rational number since it can be written as 0/1 and both 0 and 1 are integers.
Yes, any positive number is a number that doesn't have a (-) behind it (-20; -23.67; -45.45454...), and is not zero (0). Any repeating number (see 3rd negative example) is irrational, no matter what its sign. Irrational numbers also include numbers (decimals, specifically) that don't repeat, but don't stop. Numbers that don't terminate include pi. Pi, as it is, is proof of a positive irrational number.