answersLogoWhite

0

You can use the rule for multiplying derivatives.

User Avatar

Wiki User

10y ago

Still curious? Ask our experts.

Chat with our AI personalities

JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan
BeauBeau
You're doing better than you think!
Chat with Beau
TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga

Add your answer:

Earn +20 pts
Q: Cos x sin x derivative
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the derivative of cos x sin x divided by cos x sin x?

(cos x sin x) / (cos x sin x) = 1. The derivative of a constant, such as 1, is zero.


What is the Derivative of sine ex?

The derivative of sin (x) is cos (x). It does not work the other way around, though. The derivative of cos (x) is -sin (x).


What is the second derivitive of sec x?

Write sec x as a function of sines and cosines (in this case, sec x = 1 / cos x). Then use the division formula to take the first derivative. Take the derivative of the first derivative to get the second derivative. Reminder: the derivative of sin x is cos x; the derivative of cos x is - sin x.


What is the derivative of 6 sin x plus 2 cos x?

F(x) = 6 sin(x) + 2 cos(x)F'(x) = 6 cos(x) - 2 sin(x)


What is the derivative of sinx pwr cosx?

For the function: y = sin(x)cos(x) To find the derivative y', implicit differentiation must be used. To do this, both sides of the equation must be put into the argument of a natural logarithm: ln(y) = ln(sin(x)cos(x)) by the properties of logarithms, this can also be expressed as: ln(y) = cos(x)ln(sin(x)) deriving both sides of the equation yields: (1/y)(y') = cos(x)(1/sin(x))(cos(x)) + -sin(x)ln(sin(x)) This derivative features two important things. The obvious thing is the product rule use to differentiate the right side of the equation. The left side of the equation brings into play the "implicit" differentiation part of this problem. The derivative of ln(y) is a chain rule. The derivative of just ln(y) is simply 1/y, but you must also multiply by the derivative of y, which is y'. so the total derivative of ln(y) is (1/y)(y'). solving for y' in the above, the following is found: y' = y[(cos2(x)/sin(x)) - sin(x)ln(sin(x))] = y[cot(x)cos(x) - sin(x)ln(sin(x))] y' = y[cot(x)cos(x) - sin(x)ln(sin(x))] = sin(x)cos(x)[cot(x)cos(x) - sin(x)ln(sin(x)) is the most succinct form of this derivative.