A sparse matrix is a matrix in which most of the elements are zero.
Another sparse matrix.
A sparse matrix is one which normally contains a large proportion of elements whose value is 0. There is no exact proportion at which a matrix becomes sparse.
A sparse matrix is an array with more zero values than non-zero values.
how to multiply two sparse matrices
A sparse matrix is a matrix in which most of the elements are zero.
Another sparse matrix.
A sparse matrix is one which normally contains a large proportion of elements whose value is 0. There is no exact proportion at which a matrix becomes sparse.
write a programe to build a sparse matrix as an array. write function to check if the sparse matrix is a square, diagonal,lower triangular, upper triangular or tridiagonal matrix
A sparse matrix is matrix that allows special techniques to take advantage of large number of zero element. Application of sparse matrix is classification and relationship analysis in large data base system - SPARCOM
what is the disadvantage of sparse matrix?
A sparse matrix is an array with more zero values than non-zero values.
DataStructure-Program to transpose a sparse matrix.#include #include #include #define MAX1 3#define MAX2 3struct sparse{int *sp ;int row ;} ;void initsparse ( struct sparse * ) ;void create_array ( struct sparse * ) ;void display ( struct sparse ) ;int count ( struct sparse ) ;void create_tuple ( struct sparse *, struct sparse ) ;void display_tuple ( struct sparse ) ;void transpose ( struct sparse *, struct sparse ) ;void display_transpose ( struct sparse ) ;void delsparse ( struct sparse * ) ;void main( ){struct sparse s[3] ;int c, i ;for ( i = 0 ; i sp = ( int * ) malloc ( MAX1 * MAX2 * sizeof ( int ) ) ;for ( i = 0 ; i < MAX1 * MAX2 ; i++ ){printf ( "Enter element no. %d:", i ) ;scanf ( "%d", &n ) ;* ( p -> sp + i ) = n ;}}/* displays the contents of the matrix */void display ( struct sparse s ){int i ;/* traverses the entire matrix */for ( i = 0 ; i < MAX1 * MAX2 ; i++ ){/* positions the cursor to the new line for every new row */if ( i % MAX2 0 )printf ( "\n" ) ;printf ( "%d\t", * ( p.sp + i ) ) ;}}/* deallocates memory */void delsparse ( struct sparse *p ){free ( p -> sp ) ;}
Sparse matirx can be represented 1-dimensionally, by creating a array of structures, that have members sumc as: Struct RM{int ROW,int COL, int non_zero}; struct RM SM[Number_non_Zeros +1]; then input row,col for each non-zero element of the sparse matrix. if still unclear please fell free to requestion or query on ikit.bbsr@gmail.com, specifying clearly the question in the subject. Chinmaya N. Padhy (IKIT)
This is a directive, not a question.
#include <stdio.h> #define MAX1 3 #define MAX2 3 struct sparse { int *sp ; int row ; } ; void initsparse ( struct sparse * ) ; void create_array ( struct sparse * ) ; void display ( struct sparse ) ; int count ( struct sparse ) ; void create_tuple ( struct sparse *, struct sparse ) ; void display_tuple ( struct sparse ) ; void transpose ( struct sparse *, struct sparse ) ; void display_transpose ( struct sparse ) ; void delsparse ( struct sparse * ) ; void main( ) { struct sparse s[3] ; int c, i ; for ( i = 0 ; i <= 2 ; i++ ) initsparse ( &s[i] ); create_array ( &s[0] ) ; printf ( "\nElements in Sparse Matrix: " ) ; display ( s[0] ) ; c = count ( s[0] ) ; printf ( "\n\nNumber of non-zero elements: %d", c ) ; create_tuple ( &s[1], s[0] ) ; printf ( "\n\nArray of non-zero elements: " ) ; display_tuple ( s[1] ) ; transpose ( &s[2], s[1] ) ; printf ( "\n\nTranspose of array: " ) ; display_transpose ( s[2] ) ; for ( i = 0 ; i <= 2 ; i++ ) delsparse ( &s[i] ); } /* initialises data members */ void initsparse ( struct sparse *p ) { p -> sp = NULL ; } /* dynamically creates the matrix of size MAX1 x MAX2 */ void create_array ( struct sparse *p ) { int n, i ; p -> sp = ( int * ) malloc ( MAX1 * MAX2 * sizeof ( int ) ) ; for ( i = 0 ; i < MAX1 * MAX2 ; i++ ) { printf ( "Enter element no. %d:", i ) ; scanf ( "%d", &n ) ; * ( p -> sp + i ) = n ; } } /* displays the contents of the matrix */ void display ( struct sparse s ) { int i ; /* traverses the entire matrix */ for ( i = 0 ; i < MAX1 * MAX2 ; i++ ) { /* positions the cursor to the new line for every new row */ if ( i % MAX2 0 ) printf ( "\n" ) ; printf ( "%d\t", * ( p.sp + i ) ) ; } } /* deallocates memory */ void delsparse ( struct sparse *p ) { free ( p -> sp ) ; }
A sparse matrix contains many (often mostly) zero entries. The basic idea when storing sparse matrices is to only store the non-zero entries as opposed to storing all entries. Depending on the number and distribution of the non-zero entries, different data structures can be used and yield huge savings in memory when compared to a naïve approach. One example of such a sparse matrix format is the (old) Yale Sparse Matrix Format [1]. It stores an initial sparse N×N matrix M in row form using three arrays, A, IA, JA. NZ denotes the number of nonzero entries in matrix M. The array Athen is of length NZ and holds all nonzero entries of M. The array IA stores at IA(i) the position of the first element of row i in the sparse array A. The length of row i is determined by IA(i+1) - IA(i). Therefore IA needs to be of length N + 1. In array JA, the column index of the element A(j) is stored. JA is of length NZ. Another possibility is to use quadtrees