X=60 how did you get that? could you show all the steps?
There is no "exact" solution. This type of equation falls into the category of transcendental equations, which generally don't have exact solution except in special cases. The approximate solution, however, is roughly 0.739085
2
From the Pythagorean identity, sin2x = 1-cos2x. LHS = 1/(sinx cosx) - cosx/sinx LHS = 1/(sinx cosx) - (cosx/sinx)(cosx/cosx) LHS = 1/(sinx cosx) - cos2x/(sinx cosx) LHS = (1- cos2x)/(sinx cosx) LHS = sin2x /(sinx cosx) [from Pythagorean identity] LHS = sin2x /(sinx cosx) LHS = sinx/cosx LHS = tanx [by definition] RHS = tanx LHS = RHS and so the identity is proven. Q.E.D.
Yes, that looks good. That's 180 degrees plus every multiple of 360 degrees more.
X=60 how did you get that? could you show all the steps?
There is no "exact" solution. This type of equation falls into the category of transcendental equations, which generally don't have exact solution except in special cases. The approximate solution, however, is roughly 0.739085
2
From the Pythagorean identity, sin2x = 1-cos2x. LHS = 1/(sinx cosx) - cosx/sinx LHS = 1/(sinx cosx) - (cosx/sinx)(cosx/cosx) LHS = 1/(sinx cosx) - cos2x/(sinx cosx) LHS = (1- cos2x)/(sinx cosx) LHS = sin2x /(sinx cosx) [from Pythagorean identity] LHS = sin2x /(sinx cosx) LHS = sinx/cosx LHS = tanx [by definition] RHS = tanx LHS = RHS and so the identity is proven. Q.E.D.
x = 3pi/4
The period is 2*pi radians.
2sinxcosx-cosx=0 Factored : cosx(2sinx-1)=0 2 solutions: cosx=0 or sinx=.5 For cosx=0, x=90 or 270 degrees For sinx=.5, x=30 degrees x = {30, 90, 270}
Yes, that looks good. That's 180 degrees plus every multiple of 360 degrees more.
NO, sinxtanx=sinxsinx/cosx since tanx is sinx/cosx this is sin^2xcosx now add cosx cosx(sin^2x+1) after factoring Does this equal tanx? No, since this would require tanx to equal cosx(sin^2x+1) and it does not.
Sin2x = radical 2
to simplify Cosx=Sinx Tanx you should remember your fundamental and pythagorean identities.. Cosx + Sinx Tanx Cosx + Sinx (Sinx/Cosx) <---------- From Tanx= Sinx/Cosx Cosx + Sin2x/ Cos x <------------- do the LCD Cosx (Cosx/Cosx) + Sin2x/Cosx (Cos2x+Sin2x)/Cosx 1/Cosx <--------- From Sin2x + Cos2x =1 or Secx <-------- answer Comment if you have questions...:))
cosx + sinx = 0 when sinx = -cosx. By dividing both sides by cosx you get: sinx/cosx = -1 tanx = -1 The values where tanx = -1 are 3pi/4, 7pi/4, etc. Those are equivalent to 135 degrees, 315 degrees, etc.