answersLogoWhite

0

Yes, I do. Very many.

User Avatar

Wiki User

9y ago

Still curious? Ask our experts.

Chat with our AI personalities

SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve
DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin
EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra

Add your answer:

Earn +20 pts
Q: Do you know any famous geometric sequence?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is a geometric rule for pattern?

Not sure about this question. But, a geometric sequence is a sequence of numbers such that the ratio of any two consecutive numbers is a constant, known as the "common ratio". A geometric sequence consists of a set of numbers of the form a, ar, ar2, ar3, ... arn, ... where r is the common ratio.


A sequence of numbers that follows a rule is a what?

It is a sequence of numbers. That is all. The sequence could be arithmetic, geometric, harmonic, exponential or be defined by a rule that does not fit into any of these categories. It could even be random.


What is descending geometric sequence?

A geometric sequence is a sequence where each term is a constant multiple of the preceding term. This constant multiplying factor is called the common ratio and may have any real value. If the common ratio is greater than 0 but less than 1 then this produces a descending geometric sequence. EXAMPLE : Consider the sequence : 12, 6, 3, 1.5, 0.75, 0.375,...... Each term is half the preceding term. The common ratio is therefore ½ The sequence can be written 12, 12(½), 12(½)2, 12(½)3, 12(½)4, 12(½)5,.....


What is geometic sequence?

A geometric sequence is a sequence of a number in which the ratio of any number (other than the first) to its predecessor (the one before) is a constant.if t(k) is the kth term in the sequence thent(1), the seed, is given and then,t(n) = r*t(n-1) where r is the common ratio.


Find the common ratio what geometric sequence 3.512 12.292 43.022 150.577 527.020?

The ratio can be found by dividing any (except the first) number by the one before it.