answersLogoWhite

0

To express a geometric sequence in function notation, identify the first term (a) and the common ratio (r) of the sequence. The nth term of a geometric sequence can be represented as ( f(n) = a \cdot r^{(n-1)} ), where ( n ) is the term number. For example, if the first term is 2 and the common ratio is 3, the function notation would be ( f(n) = 2 \cdot 3^{(n-1)} ). This allows you to calculate any term in the sequence using the function ( f(n) ).

User Avatar

AnswerBot

1w ago

What else can I help you with?

Continue Learning about Math & Arithmetic
Related Questions

find the next two terms in geometric sequence 2,6,18,54,162,486,1458?

It is 4374


Find the 10th term of the geometric sequence 10,-20,40…?

-5,120


How do you find the geometric sequence?

a = -4 r = -3


What is the 7th term in the geometric sequence whose first term is 5 and the common ratio is -2?

Find the 7th term of the geometric sequence whose common ratio is 1/2 and whose first turn is 5


What is the formula to find the sum of a geometric sequence?

The formula to find the sum of a geometric sequence is adding a + ar + ar2 + ar3 + ar4. The sum, to n terms, is given byS(n) = a*(1 - r^n)/(1 - r) or, equivalently, a*(r^n - 1)/(r - 1)


What is the fifth term to the geometric sequence 804020?

To find the fifth term of the geometric sequence 8, 0, 4, 0, 20, we need to identify a pattern. The terms appear to alternate between zero and other values, but there might be a misunderstanding since the terms provided don't follow a consistent geometric ratio. Assuming the sequence is correct as given, the fifth term is 20.


What is the common ratio of the geometric sequence 625 125 25 5 1?

It is 0.2


Find the geometric mean 10 and 40?

Used the GEOMEAN function on Excel and the answer it gave was 20.


What is the 6th term of the geometric sequence below?

To find the 6th term of a geometric sequence, you need the first term and the common ratio. The formula for the nth term in a geometric sequence is given by ( a_n = a_1 \cdot r^{(n-1)} ), where ( a_1 ) is the first term, ( r ) is the common ratio, and ( n ) is the term number. Please provide the first term and common ratio so I can calculate the 6th term for you.


How do you find the given term in a geometric sequence?

nth term Tn = arn-1 a = first term r = common factor


How do you find the common ratio in a geometric sequence?

Divide any term in the sequence by the previous term. That is the common ratio of a geometric series. If the series is defined in the form of a recurrence relationship, it is even simpler. For a geometric series with common ratio r, the recurrence relation is Un+1 = r*Un for n = 1, 2, 3, ...


What is the common ratio for the following sequence 12 -14 18 -116?

To find the common ratio of a geometric sequence, we divide each term by its preceding term. However, the sequence provided (12, -14, 18, -116) does not exhibit a consistent ratio, as the ratios between consecutive terms are -14/12, 18/-14, and -116/18, which are not equal. Therefore, this sequence is not geometric and does not have a common ratio.