A 150 degree angle is an obtuse angle because it is greater than 90 but less than 180 degrees
No, it is not a definition: it is an imperative statement requiring you to do something!
Yes
No, not always. It depends on if the original biconditional statement is true. For example take the following biconditional statement:x = 3 if and only if x2 = 9.From this biconditional statement we can extract two conditional statements (hence why it is called a bicondional statement):The Conditional Statement: If x = 3 then x2 = 9.This statement is true. However, the second statement we can extract is called the converse.The Converse: If x2=9 then x = 3.This statement is false, because x could also equal -3. Since this is false, it makes the entire original biconditional statement false.All it takes to prove that a statement is false is one counterexample.
The true biconditional statement that can be formed is: "A number is even if and only if it is divisible by 2." This statement combines both the original conditional ("If a number is divisible by 2, then it is even") and its converse ("If a number is even, then it is divisible by 2"), establishing that the two conditions are equivalent.
If lines lie in two planes, then the lines are coplanar.
A biconditional is the conjunction of a conditional statement and its converse.
It is the biconditional.
No, it is not a definition: it is an imperative statement requiring you to do something!
A biconditional is the conjunction of a conditional statement and its converse.
Yes
No, not always. It depends on if the original biconditional statement is true. For example take the following biconditional statement:x = 3 if and only if x2 = 9.From this biconditional statement we can extract two conditional statements (hence why it is called a bicondional statement):The Conditional Statement: If x = 3 then x2 = 9.This statement is true. However, the second statement we can extract is called the converse.The Converse: If x2=9 then x = 3.This statement is false, because x could also equal -3. Since this is false, it makes the entire original biconditional statement false.All it takes to prove that a statement is false is one counterexample.
If a number is nonzero, then the number is positive.
If lines lie in two planes, then the lines are coplanar.
a converse is an if-then statement in which the hypothesis and the conclusion are switched.
Biconditional Statement for: Perpendicular Bisector Theorem: A point is equidistant if and only if the point is on the perpendicular bisector of a segment. Converse of the Perpendicular Bisector Theorem: A point is on the perpendicular bisector of the segment if and only if the point is equidistant from the endpoints of a segment.
Find the converse of the following statement. If it's a dime, then it's a coin.
An integer n is odd if and only if n^2 is odd.