If lines lie in two planes, then the lines are coplanar.
False
false
No, not always. It depends on if the original biconditional statement is true. For example take the following biconditional statement:x = 3 if and only if x2 = 9.From this biconditional statement we can extract two conditional statements (hence why it is called a bicondional statement):The Conditional Statement: If x = 3 then x2 = 9.This statement is true. However, the second statement we can extract is called the converse.The Converse: If x2=9 then x = 3.This statement is false, because x could also equal -3. Since this is false, it makes the entire original biconditional statement false.All it takes to prove that a statement is false is one counterexample.
The true biconditional statement that can be formed is: "A number is even if and only if it is divisible by 2." This statement combines both the original conditional ("If a number is divisible by 2, then it is even") and its converse ("If a number is even, then it is divisible by 2"), establishing that the two conditions are equivalent.
The statement is bi-conditional. The "if and only if" should have tipped you off immediately.
It is the biconditional.
A biconditional is the conjunction of a conditional statement and its converse.
A biconditional is the conjunction of a conditional statement and its converse.
If a number is nonzero, then the number is positive.
a condtional statement may be true or false but only in one direction a biconditional statement is true in both directions
False
false
What is negation of biconditional statement?
No, not always. It depends on if the original biconditional statement is true. For example take the following biconditional statement:x = 3 if and only if x2 = 9.From this biconditional statement we can extract two conditional statements (hence why it is called a bicondional statement):The Conditional Statement: If x = 3 then x2 = 9.This statement is true. However, the second statement we can extract is called the converse.The Converse: If x2=9 then x = 3.This statement is false, because x could also equal -3. Since this is false, it makes the entire original biconditional statement false.All it takes to prove that a statement is false is one counterexample.
A biconditional is a statement wherein the truth of each item depends on the truth of the other.
The statement is bi-conditional. The "if and only if" should have tipped you off immediately.
The conditional statement is: "If 2x - 5 = 11, then x = 8" The biconditional statement is the statement that contains "if and only if". Some textbooks or mathematicians use this symbol ⇔. The biconditional statement of the given is: x = 8 ⇔ 2x - 5 = 11 OR x = 8 if and only if 2x - 5 = 11.