To convert the vertex form of a parabola, which is typically expressed as (y = a(x-h)^2 + k), into standard form (y = ax^2 + bx + c), you need to expand the equation. Start by squaring the binomial ((x-h)), which gives (x^2 - 2hx + h^2). Then, distribute the coefficient (a) and combine like terms to achieve the standard form. The resulting equation will be (y = ax^2 - 2ahx + (ah^2 + k)).
Assuming the vertex is 0,0 and the directrix is y=4 x^2=0
A quadratic equation in vertex form is expressed as ( y = a(x - h)^2 + k ), where ((h, k)) is the vertex of the parabola. For a parabola with vertex at ((11, -6)), the equation becomes ( y = a(x - 11)^2 - 6 ). The value of (a) determines the direction and width of the parabola. Without additional information about the parabola's shape, (a) can be any non-zero constant.
To write an equation for a parabola in standard form, use the format ( y = a(x - h)^2 + k ) for a vertical parabola or ( x = a(y - k)^2 + h ) for a horizontal parabola. Here, ((h, k)) represents the vertex of the parabola, and (a) determines the direction and width of the parabola. If (a > 0), the parabola opens upwards (or to the right), while (a < 0) indicates it opens downwards (or to the left). To find the specific values of (h), (k), and (a), you may need to use given points or the vertex of the parabola.
To rewrite the equation of a parabola in standard form, you need to express it as ( y = a(x - h)^2 + k ) for a vertically oriented parabola or ( x = a(y - k)^2 + h ) for a horizontally oriented parabola. Here, ( (h, k) ) represents the vertex of the parabola, and ( a ) determines its direction and width. You can achieve this by completing the square on the quadratic expression.
The equation that describes a parabola that opens up or down with its vertex at the point (h, v) is given by the vertex form of a quadratic equation: ( y = a(x - h)^2 + v ), where ( a ) determines the direction and width of the parabola. If ( a > 0 ), the parabola opens upwards, while if ( a < 0 ), it opens downwards.
The graph of a quadratic function is always a parabola. If you put the equation (or function) into vertex form, you can read off the coordinates of the vertex, and you know the shape and orientation (up/down) of the parabola.
The difference between standard form and vertex form is the standard form gives the coefficients(a,b,c) of the different powers of x. The vertex form gives the vertex 9hk) of the parabola as part of the equation.
-2
Assuming the vertex is 0,0 and the directrix is y=4 x^2=0
A quadratic equation in vertex form is expressed as ( y = a(x - h)^2 + k ), where ((h, k)) is the vertex of the parabola. For a parabola with vertex at ((11, -6)), the equation becomes ( y = a(x - 11)^2 - 6 ). The value of (a) determines the direction and width of the parabola. Without additional information about the parabola's shape, (a) can be any non-zero constant.
In the equation y x-5 2 plus 16 the standard form of the equation is 13. You find the answer to this by finding the value of X.
To determine the equation of a parabola with a vertex at the point (5, -3), we can use the vertex form of a parabola's equation: (y = a(x - h)^2 + k), where (h, k) is the vertex. Substituting in the vertex coordinates, we have (y = a(x - 5)^2 - 3). The value of "a" will determine the direction and width of the parabola, but any equation in this form with varying "a" values could represent the parabola.
Y=3x^2 and this is in standard form. The vertex form of a prabola is y= a(x-h)2+k The vertex is at (0,0) so we have y=a(x)^2 it goes throug (2,12) so 12=a(2^2)=4a and a=3. Now the parabola is y=3x^2. Check this: It has vertex at (0,0) and the point (2,12) is on the parabola since 12=3x2^2
To rewrite the equation of a parabola in standard form, you need to express it as ( y = a(x - h)^2 + k ) for a vertically oriented parabola or ( x = a(y - k)^2 + h ) for a horizontally oriented parabola. Here, ( (h, k) ) represents the vertex of the parabola, and ( a ) determines its direction and width. You can achieve this by completing the square on the quadratic expression.
This is called the 'standard form' for the equation of a parabola:y =a (x-h)2+vDepending on whether the constant a is positive or negative, the parabola will open up or down.
please help
the standard form of the equation of a parabola is x=y2+10y+22