This is called the 'standard form' for the equation of a parabola:
y =a (x-h)2+v
Depending on whether the constant a is positive or negative, the parabola will open up or down.
The standard equation for a Parabola with is vertex at the origin (0,0) is, x2 = 4cy if the parabola opens vertically upwards/downwards, or y2 = 4cx when the parabola opens sideways. As the focus is at (0,6) then the focus is vertically above the vertex and we have an upward opening parabola. Note that c is the distance from the vertex to the focus and in this case has a value of 6 (a positive number). The equation is thus, x2 = 4*6y = 24y
The maximum point.
Recall that the graph of a linear equation in two variables is a line. The equation y = ax^2 + bx + c, where a, b, and c are real numbers and a is different than 0 represents a quadratic function. Its graph is a parabola, a smooth and symmetric U-shape. 1. The axis of symmetry is the line that divides the parabola into two matching parts. Its equation is x = -b/2a 2. The highest or lowest point on a parabola is called the vertex (also called a turning point). Its x-coordinate is the value of -b/2a. If a > 0, the parabola opens upward, and the vertex is the lowest point on the parabola. The y-coordinate of the vertex is the minimum value of the function. If a < 0, the parabola opens downward, and the vertex is the highest point on the parabola. The y-coordinate of the vertex is the maximum value of the function. 3. The x-intercepts of the graph of y = ax^2 + bx + c are the real solutions to ax^2 + bx + c = 0. The nature of the roots of a quadratic function can be determined by looking at its graph. If you see that there are two x-intercepts on the graph of the equation, then the equation has two real roots. If you see that there is one x-intercept on the graph of the equation, then the equation has one real roots. If you see that the graph of the equation never crosses the x-axis, then the equation has no real roots. The roots can be used further to determine the factors of the equation, as (x - r1)(x -r2) = 0
Solution 1Start by putting the parabola's equation into the form y = ax2 + bx + c if it opens up or down,or x = ay2 + by + c if it is opens to the left or right,where a, b, and c are constants.The x-value for the vertex is -(b/2a). You can use this x-value to solve for the y-value by substituting the x value in the original quadratic equation.Solution 2Put the parabola's equation into this form: y - k = 4p(x - h)2or x - h = 4p(y - k)2You just need to simplify the equation until it looks like this. The vertex is located at the coordinates (h,k). (p is for the focus, but that isn't important as long as you know h and k.)
In classic geometry, it opens down when the directrix is above the focus.In analytical (coordinate) geometry, if the equation of the parabola isy = ax^2 + bx + c, it opens down if a < 0.
The equation that describes a parabola that opens up or down with its vertex at the point (h, v) is given by the vertex form of a quadratic equation: ( y = a(x - h)^2 + v ), where ( a ) determines the direction and width of the parabola. If ( a > 0 ), the parabola opens upwards, while if ( a < 0 ), it opens downwards.
The equation of a parabola that opens left or right with its vertex at the point ((h, v)) is given by ((y - v)^2 = 4p(x - h)), where (p) is the distance from the vertex to the focus. If (p > 0), the parabola opens to the right, and if (p < 0), it opens to the left.
The equation that describes a parabola opening left or right with its vertex at the point ((h, k)) is given by ((y - k)^2 = 4p(x - h)), where (p) determines the direction and width of the parabola. If (p > 0), the parabola opens to the right, while if (p < 0), it opens to the left. Here, ((h, k)) represents the vertex coordinates.
If the value of ( a ) in the equation ( y = ax^2 ) is positive, the parabola opens upwards. This means that the vertex of the parabola is the lowest point, and as you move away from the vertex in either direction along the x-axis, the value of ( y ) increases. Conversely, if ( a ) were negative, the parabola would open downwards.
The standard equation for a Parabola with is vertex at the origin (0,0) is, x2 = 4cy if the parabola opens vertically upwards/downwards, or y2 = 4cx when the parabola opens sideways. As the focus is at (0,6) then the focus is vertically above the vertex and we have an upward opening parabola. Note that c is the distance from the vertex to the focus and in this case has a value of 6 (a positive number). The equation is thus, x2 = 4*6y = 24y
Finding the vertex of the parabola is important because it tells you where the bottom (or the top, for a parabola that 'opens' downward), and thus where you can begin graphing.
An equation for a sideways parabola can be expressed in the form ( y^2 = 4px ) for a parabola that opens to the right, or ( y^2 = -4px ) for one that opens to the left. Here, ( p ) represents the distance from the vertex to the focus. The vertex of the parabola is at the origin (0,0), and the axis of symmetry is horizontal. If the vertex is not at the origin, the equation can be adjusted to ( (y-k)^2 = 4p(x-h) ), where ((h, k)) is the vertex.
focus , directrix
If the equation of the parabola isy = ax^2 + bx + c, then it opens above when a>0 and opens below when a<0. [If a = 0 then the equation describes a straight line, and not a parabola!].
The given terms can't be an equation without an equality sign but a negative parabola opens down wards whereas a positive parabola opens up wards.
To determine if a parabola opens up or down, look at the coefficient of the quadratic term in its equation, typically in the form (y = ax^2 + bx + c). If the coefficient (a) is positive, the parabola opens upwards; if (a) is negative, it opens downwards. You can also visualize the vertex: if the vertex is the lowest point, it opens up, and if it's the highest point, it opens down.
Since the vertex is at the origin and the parabola opens downward, the equation of the parabola is x2 = 4py, where p < 0, and the axis of symmetry is the y-axis. So the focus is at y-axis at (0, p) and the directrix equation is y = -p. Now, what do you mean with 1 and 76 units? 1.76 units? If the distance of the vertex and the focus is 1.76 units, then p = -1.76, thus 4p = -7.04, then the equation of the parabola is x2 = -7.04y.