6134
There is no such ratio that applies for all single-digit and double-digit integers.
There are 9 digits that can be the first digit (1-9); for each of these there is 1 digit that can be the second digit (6); for each of these there are 10 digits that can be the third digit (0-9); for each of these there are 10 digits that can be the fourth digit (0-9). → number of numbers is 9 × 1 × 10 × 10 = 900 such numbers.
-1
4/4 = 1
oo..this one is very hard.
2
6134
well, i think if you use this you can find out. A = 1-9 ,B = 0-9 , C = 0-9 , D = 0-9 , E = 0-9 for 2digit numbers = A A for 3 digit numbers = A B A for 4 digit numbers = A B B A and so on till you get to for 8 digit numbers = A B C D D C B A for 9 digit numbers = A B C D E D C B A and last for 10 digit number = A B C D E E D C B A this should work...
Find the quotient
There are 28706 such combinations. 5456 of these comprise three 2-digit numbers, 19008 comprise two 2-digit numbers and two 1-digit numbers, 4158 comprise one 2-digit number and four 1-digit numbers and 84 comprise six 1-digit numbers.
2
There are 9 1-digit numbers and 16-2 digit numbers. So a 5 digit combination is obtained as:Five 1-digit numbers and no 2-digit numbers: 126 combinationsThree 1-digit numbers and one 2-digit number: 1344 combinationsOne 1-digit numbers and two 2-digit numbers: 1080 combinationsThat makes a total of 2550 combinations. This scheme does not differentiate between {13, 24, 5} and {1, 2, 3, 4, 5}. Adjusting for that would complicate the calculation considerably and reduce the number of combinations.
The answer will depend on how many digits there are in each of the 30 numbers. If the 30 numbers are all 6-digit numbers then the answer is NONE! If the 30 numbers are the first 30 counting numbers then there are 126 combinations of five 1-digit numbers, 1764 combinations of three 1-digit numbers and one 2-digit number, and 1710 combinations of one 1-digit number and two 2-digit numbers. That makes a total of 3600 5-digit combinations.
There is no such ratio that applies for all single-digit and double-digit integers.
yes
1