Best Answer

A rectangle has four sides, with a 90 degree angle at the corners: making each pair of opposing sides equal in length. The ratio of two to three indicates that one pair of sides is comprised of two units of measure each, and the other pair of sides is comprised of three units of measure each. This equals a total of ten units of measure for the entire perimeter. You then divide the ten units of measure into the total perimeter of 440mm: which equals 44mm per unit of measure. Since one pair of sides is two units of measure, this indicates that the shorter side of the rectangle is 88mm in length. The longer side, of three units of measure, totals 132mm...the rectangle will measure 88mm X 132mm. To check this, add the four sides: 88 + 132 +88 +132=440mm.

Q: How do you construct a rectangle whose perimeter is 440mm and whose sides are in the ratio of 2 to 3?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

The perimeter of rectangle A would then be 80 because 80 to 100 is 4 to 5 simplified and the area of triangle A would depend on the sides and area of rectangle B which have not been given.

These are not similar rectangles so there is no obvious candidate for the ratio. Is it ratio of lengths (sides, perimeter, diameter), or ratio of area?

Here's how to do that: 1). Find its length. 2). Find its perimeter. 3). Divide (its length) by (its perimeter). The quotient is the ratio of its length to its perimeter.

It's a parallelogram with right angles whose dimensions are in the ratio of 5 to 4 .Its perimeter and area are left as an exercise for the student.

Using Pythagoras' theorem: 162+122 = 400 and the square root of this is 20 (the diagonal) Therefore: 16+12+20 = a perimeter of 48 inches

Related questions

1:1.23

The perimeter of rectangle A would then be 80 because 80 to 100 is 4 to 5 simplified and the area of triangle A would depend on the sides and area of rectangle B which have not been given.

More information is needed. For the same perimeter, the area will vary, depending on whether you have a circle, a square, a rectangle with a ratio of 2:1, a rectangle with a ratio of 3:1, etc.

By the length of its sides, by its perimeter, by the ratio of its adjacent sides.

If the length to width ratio is 4 to 5 then the length to width ratio is 4 to 5no matter what the perimeter. If the perimeter is 70 feet then the sides are 15.555... and 19.444... feet respectively.

The ratio of the perimeters is equal to the scale factor. If rectangle #1 has sides L and W, then the perimeter is 2*L1 + 2*W1 = 2*(L1 + W1).If rectangle # 2 is similar to #1 and sides are scaled by a factor S, so that L2 = S*L1 and W2 = S*W1, the perimeter of rectangle #2 is 2*(L2 + W2)= 2*(S*L1 + S*W1) = S*2*(L1 + W1) = S*(perimeter of rectangle #1).

You can't calculate the perimeter from the surface area, if you don't know what figure you are talking about. For example, the answer will be different for a circle, for a square, for a rectangle with a 2:1 side ratio, for a rectangle with a 3:1 ratio, for different ellipses, for a five-pointed star, etc.

You CAN'T calculate the perimeter of a rectangle, knowing only its diagonal. You do need some additional information about the rectangle - such as its width, or its length, or perhaps the length/width ratio.

If the only information that you have is ... A) the figure is a rectangle, and B) the perimeter ... then you cannot calculate the area. The area of a rectangle is the length multiplied by the height., The perimeter is twice the length plus twice the height. So, a rectangle with a length of 9 units and a height of 1 unit will have a perimeter of 20 units and an area of 9 square units. Another rectangle with a length of 6 units and a height of 4 units will also have a perimeter of 20 units, but it will have an area of 24 square units. To be able to calculate the area from the perimeter you need to know one of two additional things - either one of the measurements, or the ratio of the height to the length.+++To summarise, you can, IF you know the ratio as mentioned. Then apply that to half the perimeter to find the length and breadth.

Example is a 4 x 4 square which has the same perimeter as a 6 x 2 rectangle. The respective areas are 16 and 12. This would appear to indicate a ratio of 3: 1.x is the length of side of the square, so perimeter is 4x making the length + width of the rectangle 2x.If the areas are in the ratio of 4 : 3, then rectangle area is 3x2/4.Substitute any value for x, say 7, then respective areas are 49 and 147/4 ie 36.75 and the perimeter of the rectangle 14.If the 3 : 1 ratio is correct then sides of the rectangle would be 42/4 and 14/4 ie 10.5 and 3.5. These measurements would give an area of 10.5 x 3.5 ie 36.75.Yep, I'll settle for 3 : 1.

If the only information that you have is ... A) the figure is a rectangle, and B) the perimeter ... then you cannot calculate the area. The area of a rectangle is the length multiplied by the height., The perimeter is twice the length plus twice the height. So, a rectangle with a length of 9 units and a height of 1 until will have a perimeter of 20 units and an area of 9 square units. Another rectangle with a length of 6 units and a height of 4 units will also have a perimeter of 20 units, but it will have an area of 24 square units. To be able to calculate the area from the perimeter you need to know one of two additional things - either one of the measurements, or the ratio of the height to the length.

the ratio of the perimeter of triangle ABC to the perimeter of triangle JKL is 2:1. what is the perimeter of triangle JKL?