You can't determine velocity from that graph, because the graph tells you
nothing about the direction of the motion. But you can determine the speed.
The speed at any moment is the slope of a line that's tangent to the graph
at that moment.
Using the Pythagorean theorem, we can determine the actual velocity in the xy plane to be (the square root of 41) m/s along the vector [5,4].
Graph both and where they cross is the answer to both.
You calculate the coordinates using a fraction!
A bar graph
circle graph= a graph that represents data using sections of a circle. The sum of the percents in a circle graph is 100o/o
To find the position from a velocity-vs-time graph, you need to calculate the area under the velocity curve. If the velocity is constant, the position can be found by multiplying the velocity by the time. If the velocity is changing, you need to calculate the area under the curve using calculus to determine the position.
To develop the general velocity equation from a velocity vs. time graph, you can determine the slope of the graph at any given point, which represents the acceleration. Integrating the acceleration with respect to time gives you the velocity equation that relates velocity to time. The integration constant can be determined using initial conditions or additional information from the graph.
Acceleration can be determined from a position vs. time graph by finding the slope of the velocity vs. time graph. The slope of the velocity vs. time graph represents the rate at which velocity is changing, which is acceleration. A steeper positive slope indicates a higher acceleration, while a steeper negative slope indicates deceleration.
To determine velocity using momentum, you can use the formula: momentum mass x velocity. Rearrange the formula to solve for velocity: velocity momentum / mass. By dividing the momentum by the mass of the object, you can calculate its velocity.
To determine velocity using acceleration and time, you can use the formula: velocity initial velocity (acceleration x time). This formula takes into account the initial velocity, acceleration, and time to calculate the final velocity.
You can determine mass using momentum and velocity by using the formula: momentum = mass x velocity. Rearrange the formula to solve for mass as mass = momentum/velocity. Plug in the values for momentum and velocity to calculate the mass.
To determine velocity using acceleration and distance, you can use the equation: velocity square root of (2 acceleration distance). This formula takes into account the acceleration of the object and the distance it has traveled to calculate its velocity.
To determine velocity using acceleration and distance, you can use the equation: velocity square root of (2 acceleration distance). This formula takes into account the acceleration of the object and the distance it has traveled to calculate its velocity.
To determine velocity using time as a factor, you can use the formula: velocity distance / time. This means that you divide the distance traveled by the time it took to travel that distance. The resulting value will give you the velocity of the object.
To determine the final velocity of an object using the concept of momentum, you can use the equation: momentum mass x velocity. By calculating the initial momentum and final momentum of the object, you can then solve for the final velocity using the formula: final velocity final momentum / mass.
To determine velocity using position and time data, you can calculate the average velocity by dividing the change in position by the change in time. This gives you the speed and direction of an object's motion at a specific point in time.
It is not possible to sketch anything using this browser. The speed of a body cannot be determined from a distance-time graph. The slope of the graph is a measure of the radial velocity - that is the speed directly towards or directly away from the starting point. However, there is absolutely no information of any motion in a transverse direction. Since motion in this direction cannot be assumed to be 0, the distance-time graph cannot be used to determine speed.