answersLogoWhite

0

(sin x + cos x) / cosx

= sin x / cos x + cosx / cos x

= tan x + 1

User Avatar

Wiki User

13y ago

What else can I help you with?

Related Questions

Verify that sin minus cos plus 1 divided by sin plus cos subtract 1 equals sin plus 1 divided by cos?

[sin - cos + 1]/[sin + cos - 1] = [sin + 1]/cosiff [sin - cos + 1]*cos = [sin + 1]*[sin + cos - 1]iff sin*cos - cos^2 + cos = sin^2 + sin*cos - sin + sin + cos - 1iff -cos^2 = sin^2 - 11 = sin^2 + cos^2, which is true,


How to express Sin squared 1 in terms of cos 1?

sin2(1) = 1 - cos2(1) = 1 - [cos(1)]2


Cos plus cos plus cos?

3cos


Express all the trignometric ratios in terms of COS A?

Provided that any denominator is non-zero, sin = sqrt(1 - cos^2)tan = sqrt(1 - cos^2)/cos sec = 1/cos cosec = 1/sqrt(1 - cos^2) cot = cos/sqrt(1 - cos^2)


How do you solve sinx divided by 1 plus cosx plus cosx divided by sinx?

sin x/(1+cos x) + cos x / sin x Multiply by sin x (1+cos x) =[(sin^2 x + cos x(1+cos x) ] / sin x (1+cos x) = [(sin^2 x + cos x + cos^2 x) ] / sin x (1+cos x) sin^2 x + cos^2 x = 1 = (1+cos x) / sin x (1+cos x) = 1/sin x


How would you prove left cosA plus sinA right times left cos2A plus sin2A right equals cosA plus sin3A?

You need to make use of the formulae for sin(A+B) and cos(A+B), and that cos is an even function: sin(A+B) = cos A sin B + sin A cos B cos(A+B) = cos A cos B - sin A sin B cos even fn → cos(-x) = cos(x) To prove: (cos A + sin A)(cos 2A + sin 2A) = cos A + sin 3A The steps are to work with the left hand side, expand the brackets, collect [useful] terms together, apply A+B formula above (backwards) and apply even nature of cos function: (cos A + sin A)(cos 2A + sin 2A) = cos A cos 2A + cos A sin 2A + sin A cos 2A + sin A sin 2A = (cos A cos 2A + sin A sin 2A) + (cos A sin 2A + sin A cos 2A) = cos(A - 2A) + sin(A + 2A) = cos(-A) + sin 3A = cos A + sin 3A which is the right hand side as required.


Express cos -155 as a function of a positive acute angle?

Cos(-155) = cos(155) = 1 - cos(180-155) = 1-cos(25).


What will be the X in terms of a and b if Cos aX equals 1 plus bX and a and b are constants?

a = 0, b = 0.


How do you express cosine in terms of cotangent?

cos(x)=sin(x-tau/4) tan(x)=sin(x)/cos(x) sin(x)=tan(x)*cos(x) cos(x)=tan(x-tau/4)*cos(x-tau/4) you can see that we have some circular reasoning going on, so the best we can do is express it as a combination of sines and cotangents: cos(x)=1/cot(x-tau/4)*sin(x-tau/2) tau=2*pi


How does sin2x divided by 1-cosx equal 1 plus cosx?

sin2x / (1-cos x) = (1-cos2x) / (1-cos x) = (1-cos x)(1+cos x) / (1-cos x) = (1+cos x) sin2x=1-cos2x as sin2x+cos2x=1 1-cos2x = (1-cos x)(1+cos x) as a2-b2=(a-b)(a+b)


Trigonometry Identity Help Express cosecant in terms of cosine?

csc(x) = 1/sin(x) = +/- 1/sqrt(1-cos^2(x))


What is cot x sin x simplified?

To simplify such expressions, it helps to express all trigonometric functions in terms of sines and cosines. That is, convert tan, cot, sec or csc to their equivalent in terms of sin and cos.