Provided that any denominator is non-zero,
sin = sqrt(1 - cos^2)tan = sqrt(1 - cos^2)/cos
sec = 1/cos
cosec = 1/sqrt(1 - cos^2)
cot = cos/sqrt(1 - cos^2)
Chat with our AI personalities
cos(x)=sin(x-tau/4) tan(x)=sin(x)/cos(x) sin(x)=tan(x)*cos(x) cos(x)=tan(x-tau/4)*cos(x-tau/4) you can see that we have some circular reasoning going on, so the best we can do is express it as a combination of sines and cotangents: cos(x)=1/cot(x-tau/4)*sin(x-tau/2) tau=2*pi
csc(x) = 1/sin(x) = +/- 1/sqrt(1-cos^2(x))
The best way to answer this question is with the angle addition formulas. Sin(a + b) = sin(a)cos(b) + cos(a)sin(b) and cos(a + b) = cos(a)cos(b) - sin(a)sin(b). If you compute this repeatedly until you get sin(3x)cos(4x) = 3sin(x) - 28sin^3(x) + 56sin^5(x) - 32sin^7(x).
To solve the equation 2cos(x) + cos(x) - 1 = 0, we first combine like terms to get 3cos(x) - 1 = 0. Then, we isolate the cosine term by adding 1 to both sides to get 3cos(x) = 1. Finally, we divide by 3 to solve for cos(x), which gives cos(x) = 1/3. Therefore, x = arccos(1/3) or approximately 70.53 degrees.
cos(30)cos(55)+sin(30)sin(55)=cos(30-55) = cos(-25)=cos(25) Note: cos(a)=cos(-a) for any angle 'a'. cos(a)cos(b)+sin(a)sin(b)=cos(a-b) for any 'a' and 'b'.