Rearrange: 4x5 + 6x2 + 6x3 + 9 Group: 2x2 (2x3 + 3) + 3 (2x3 + 3) Simplify to get your answer: (2x2 + 3) (2x3 + 3)
6x2=12 2x-28=?
f'(x) = 1/(2x3 + 5) rewrite f'(x) = (2X3 + 5) -1 use the chain rule d/dx (2x3 + 5) - 1 -1 * (2x3 + 5)-2 * 6x2 - 6x2(2x3 + 5) -2 ==================I would leave like this rather than rewriting this
Simplifying 6x2 + 23x + 7 Reorder the terms: 7 + 23x + 6x2 Factor a trinomial. (7 + 2x)(1 + 3x) Final result: (7 + 2x)(1 + 3x)
2x(x2 + 3x - 7)
Rearrange: 4x5 + 6x2 + 6x3 + 9 Group: 2x2 (2x3 + 3) + 3 (2x3 + 3) Simplify to get your answer: (2x2 + 3) (2x3 + 3)
6x2=12 2x-28=?
6x2 + 10x = 2x(3x + 5)
f'(x) = 1/(2x3 + 5) rewrite f'(x) = (2X3 + 5) -1 use the chain rule d/dx (2x3 + 5) - 1 -1 * (2x3 + 5)-2 * 6x2 - 6x2(2x3 + 5) -2 ==================I would leave like this rather than rewriting this
6x2 + 7x - 5 = (3x + 5)(2x - 1)
2x(3x + 5)
Simplifying 6x2 + 23x + 7 Reorder the terms: 7 + 23x + 6x2 Factor a trinomial. (7 + 2x)(1 + 3x) Final result: (7 + 2x)(1 + 3x)
6x2-18x+12 = (6x-6)(x-2)
2x(x2 + 3x - 7)
2(3x^2 + 6x + 2)
(2x - 1)(3x - 2)
One factor of 6x² + 5x - 11 is (x - 1).