Like normal expansion of brackets, along with: cos(A + B) = cos A cos B - sin A sin B sin(A + B) = sin A cos B + cos A sin B 5(cos 20 + i sin 20) × 8(cos 15 + i sin 15) = 5×8 × (cos 20 + i sin 20)(cos 15 + i sin 15) = 40(cos 20 cos 15 + i sin 15 cos 20 + i cos 15 sin 20 + i² sin 20 sin 15) = 40(cos 20 cos 15 - sin 20 cos 15 + i(sin 15 cos 20 + cos 15 sin 20)) = 40(cos(20 +15) + i sin(15 + 20)) = 40(cos 35 + i sin 35)
To find the hypotenuse with angle a and side b, we use the identity below:cos(a) = b/cWe have a and b, and to find c, we multiply both sides by c and divide both sides by cos(a):c = b/cos(a)c = 5/cos(30)c = 32.41460617mm
The answer to the math question Cos 5t cos 3t -square root 3 2 - sin 5t cos 3t equals 0. In order to find this answer you will have to find out what each letter is.
-5
cos(60) = 0.5 The simplest way is to use a calculator.
cos(5/n) = cos(0) --> 1
I'm sorry the question is not correctly displayed. If f(x) = cos(2x).cos(4x).cos(6x).cos(8x).cos(10x) then, find the limit of {1 - [f(x)]^3}/[5(sinx)^2] as x tends to 0 (zero).
Like normal expansion of brackets, along with: cos(A + B) = cos A cos B - sin A sin B sin(A + B) = sin A cos B + cos A sin B 5(cos 20 + i sin 20) × 8(cos 15 + i sin 15) = 5×8 × (cos 20 + i sin 20)(cos 15 + i sin 15) = 40(cos 20 cos 15 + i sin 15 cos 20 + i cos 15 sin 20 + i² sin 20 sin 15) = 40(cos 20 cos 15 - sin 20 cos 15 + i(sin 15 cos 20 + cos 15 sin 20)) = 40(cos(20 +15) + i sin(15 + 20)) = 40(cos 35 + i sin 35)
To find the hypotenuse with angle a and side b, we use the identity below:cos(a) = b/cWe have a and b, and to find c, we multiply both sides by c and divide both sides by cos(a):c = b/cos(a)c = 5/cos(30)c = 32.41460617mm
cos(195) = -0.965925826289
The answer to the math question Cos 5t cos 3t -square root 3 2 - sin 5t cos 3t equals 0. In order to find this answer you will have to find out what each letter is.
The integral of cos 5x is 1/5 sin (5x)
-5
cos(60) = 0.5 The simplest way is to use a calculator.
a = 3/sqrt(2)*i + 3/sqrt(2)*jb = 5ja.b = |a|*|b|*cos(q)= 3*5*cos(45) = 15/sqrt(2)
4/5
sec x = 1/cos x so sec x * cos x = 1