A relationship is a function if every element in the domain is mapped onto only one element in the codomain (range). In graph terms, it means that any line parallel to the vertical axis can meet the graph in at most one point.
Not every relation is a function. But every function is a relation. Function is just a part of relation.
A function is a relation whose mapping is a bijection.
No. A relation is not a special type of function.
Good question. A relation is simply that; any x-value to create any y-value. A function, however, cannot be defined for multiple values of x. In other words, for a relation to be a function, it must have singular values for all x within its domain.
depends on the branch of math, and the math function/relation you are talking about
Not every relation is a function. But every function is a relation. Function is just a part of relation.
No, a function must be a relation although a relation need not be a functions.
Does the graph above show a relation, a function, both a relation and a function, or neither a relation nor a function?
yes.
A function is a relation whose mapping is a bijection.
Not every relation is a function. A function is type of relation in which every element of its domain maps to only one element in the range. However, every function is a relation.
No. A relation is not a special type of function.
A relation is a function if every input has a distinct output.
Good question. A relation is simply that; any x-value to create any y-value. A function, however, cannot be defined for multiple values of x. In other words, for a relation to be a function, it must have singular values for all x within its domain.
relation and function are number that combine with number and neqative number to .
No. A relation is not a special type of function.
No, not every relation is a function. In order for a relation to be a function, each input value must map to exactly one output value. If any input value maps to multiple output values, the relation is not a function.