If the sequence is non-linear, you need to establish how it is defined.
"Non-linear sequence" is a generic term for just about ANY sequence, each of which will have a different equation.
To determine the nth term of the sequence 2581114, we need to identify a pattern or rule governing the sequence. However, without additional context or a specific formula defining the sequence, it's impossible to ascertain the nth term. If you can provide more details about how the sequence is generated or the rules behind it, I can help you find the nth term.
To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 4, then 8, then 12, then 16, and so on. This pattern suggests that the nth term can be represented by the formula n^2 + n, where n is the position of the term in the sequence. So, the nth term for the given sequence is n^2 + n.
The given sequence is 1, 6, 13, 22, 33. To find the nth term, we can observe that the differences between consecutive terms are 5, 7, 9, and 11, which indicates that the sequence is quadratic. The nth term can be expressed as ( a_n = n^2 + n ), where ( a_n ) is the nth term of the sequence. Thus, the formula for the nth term is ( a_n = n^2 + n ).
To find the nth term of the sequence 5, 15, 29, 47, 69, we first determine the differences between consecutive terms: 10, 14, 18, and 22. The second differences are constant at 4, indicating that the nth term is a quadratic function. By fitting the quadratic formula ( an^2 + bn + c ) to the sequence, we find that the nth term is ( 2n^2 + 3n ). Thus, the nth term of the sequence is ( 2n^2 + 3n ).
There is no set equation for finding the nth term of a non- linear sequence. You have to go through a procedure to find the equation suitable for your given sequence. You would have to post the equation itself or re phrase your question for the answer.
"Non-linear sequence" is a generic term for just about ANY sequence, each of which will have a different equation.
Find the formula of it.
The given sequence is an arithmetic sequence with a common difference of 6. To find the nth term of this sequence, we can use the following formula: nth term = first term + (n - 1) x common difference where n is the position of the term we want to find. In this sequence, the first term is 1 and the common difference is 6. Substituting these values into the formula, we get: nth term = 1 + (n - 1) x 6 nth term = 1 + 6n - 6 nth term = 6n - 5 Therefore, the nth term of the sequence 1, 7, 13, 19 is given by the formula 6n - 5.
To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 4, then 8, then 12, then 16, and so on. This pattern suggests that the nth term can be represented by the formula n^2 + n, where n is the position of the term in the sequence. So, the nth term for the given sequence is n^2 + n.
i dont get it
123456789 * * * * * The nth term is 3n
The nth term is Un = a + (n-1)*d where a = U1 is the first term, and d is the common difference.
To find the nth term of a sequence, we first need to identify the pattern or rule that governs the sequence. In this case, the sequence is decreasing by 6 each time. Therefore, the nth term can be represented by the formula: 18 - 6(n-1), where n is the position of the term in the sequence.
6n-5 is the nth term of this sequence
To find the nth term of the sequence 5, 15, 29, 47, 69, we first determine the differences between consecutive terms: 10, 14, 18, and 22. The second differences are constant at 4, indicating that the nth term is a quadratic function. By fitting the quadratic formula ( an^2 + bn + c ) to the sequence, we find that the nth term is ( 2n^2 + 3n ). Thus, the nth term of the sequence is ( 2n^2 + 3n ).
The nth term in the sequence -5, -7, -9, -11, -13 can be represented by the formula a_n = -2n - 3, where n is the position of the term in the sequence. In this case, the common difference between each term is -2, indicating a linear sequence. By substituting the position n into the formula, you can find the value of the nth term in the sequence.