If the highest exponent of independent variable(say x) is 2 and the highest exponent of dependent variable(say y) is 1 and x and y are not multiplied, then the function is quadratic. For example: 3x-y+x2= 2y-5x+7 represents a quadratic function but y= xy+x2+5 doesn't represent a quadratic function.
Area of rectangle: (x+5)(3x-7) = 3x2+8x-35
It is a quadratic equation that has 2 solutions
2x2-10+7 = 0 Solving the quadratic equation using the quadratic formula will give you two solutions and they are: x = (5 - the square root of 11)/2 or x = (5 + the square root of 11)/2
43
If the highest exponent of independent variable(say x) is 2 and the highest exponent of dependent variable(say y) is 1 and x and y are not multiplied, then the function is quadratic. For example: 3x-y+x2= 2y-5x+7 represents a quadratic function but y= xy+x2+5 doesn't represent a quadratic function.
x2+6x-7 = (x+7)(x-1) when factored
-7,-25
-1 -18 -25 -7
Area of rectangle: (x+5)(3x-7) = 3x2+8x-35
It is a quadratic equation that has 2 solutions
7
To find the nth term in a quadratic sequence, we first need to determine the pattern. In this case, the difference between consecutive terms is increasing by 3, 5, 7, 9, and so on. This indicates a quadratic sequence. To find the 9th term, we need to use the formula for the nth term of a quadratic sequence, which is given by: Tn = an^2 + bn + c. By plugging in n=9 and solving for the 9th term, we can find that the 9th term in this quadratic sequence is 74.
Using the quadratic equation formula: x = -5-/+ the square root of 7
2x2-10+7 = 0 Solving the quadratic equation using the quadratic formula will give you two solutions and they are: x = (5 - the square root of 11)/2 or x = (5 + the square root of 11)/2
Without an equality sign and no square variable the given terms can not be that of a quadratic equation.
43