cos(theta) = 0.7902 arcos(0.7902) = theta = 38 degrees you find complimentary angles
The length of the arc is r*theta where r is the radius and theta the angle subtended by the arc at the centre of the circle. If you do not know theta (or cannot derive it), you cannot find the length of the arc.
sine[theta]=opposite/hypotenuse=square root of (1-[cos[theta]]^2)
tan(theta) = 1 then theta = tan-1(1) + n*pi where n is an integer = pi/4 + n*pi or pi*(1/4 + n) Within the given range, this gives theta = pi/4 and 5*pi/4
The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.
The answer depends on what theta represents!
Cotan(theta) is the reciprocal of the tan(theta). So, cot(theta) = 1/2.
No.
Since theta is in the second quadrant, sin(theta) is positive. sin2(theta) = 1 - cos2(theta) = 0.803 So sin(theta) = +sqrt(0.803) = 0.896.
tan2(theta) + 5*tan(theta) = 0 => tan(theta)*[tan(theta) + 5] = 0=> tan(theta) = 0 or tan(theta) = -5If tan(theta) = 0 then tan(theta) + cot(theta) is not defined.If tan(theta) = -5 then tan(theta) + cot(theta) = -5 - 1/5 = -5.2
96 degrees Let theta represent the measure of the angle we are trying to find and theta' represent the measure of its supplement. From the problem, we know: theta=theta'+12 Because supplementary angles sum to 180 degrees, we also know: theta+theta'=180 Substituting the value from theta in the first equation into the second, we get: (theta'+12)+theta'=180 2*theta'+12=180 2*theta'=180-12=168 theta'=168/2=84 Substituting this value for theta' back into the first equation, we get: theta+84=180 theta=180-84=96
cos(theta) = 0.7902 arcos(0.7902) = theta = 38 degrees you find complimentary angles
The length of the arc is r*theta where r is the radius and theta the angle subtended by the arc at the centre of the circle. If you do not know theta (or cannot derive it), you cannot find the length of the arc.
sine[theta]=opposite/hypotenuse=square root of (1-[cos[theta]]^2)
2 sin (Θ) + 1 = 0sin (Θ) = -1/2Θ = 210°Θ = 330°
-0.5736
tan(theta) = 1 then theta = tan-1(1) + n*pi where n is an integer = pi/4 + n*pi or pi*(1/4 + n) Within the given range, this gives theta = pi/4 and 5*pi/4