Since theta is in the second quadrant, sin(theta) is positive.
sin2(theta) = 1 - cos2(theta) = 0.803
So sin(theta) = +sqrt(0.803) = 0.896.
-0.5736
A Quadrantal angle is an angle that is not in Quadrant I. Consider angle 120. You want to find cos(120) . 120 lies in quadrant II. Also, 120=180-60. So, it is enough to find cos(60) and put the proper sign. cos(60)=1/2. Cosine is negative in quadrant II, Therefore, cos(120) = -1/2.
If the resultant of two vectors, each of magnitude ( f ), is twice the magnitude ( F ), then the angle ( \theta ) between the two vectors can be determined using the formula for the resultant of two vectors: [ R = \sqrt{f^2 + f^2 + 2f^2 \cos \theta} ] Given that ( R = 2F ), we set ( R = 2f ) (assuming ( F = f )). This leads to the equation ( 4f^2 = 2f^2(1 + \cos \theta) ). Solving for ( \theta ), we find that ( \cos \theta = 0 ), which means ( \theta = 90^\circ ). Thus, the angle between the vectors is ( 90^\circ ).
The angle of elevation of the sun can be determined using the tangent function in trigonometry. Specifically, if the height of the flagpole is ( M ) and the length of the shadow is ( m ), the angle of elevation ( \theta ) can be calculated using the formula ( \tan(\theta) = \frac{M}{m} ). To find the angle, use ( \theta = \arctan\left(\frac{M}{m}\right) ). This angle represents how high the sun is in the sky relative to the horizontal ground.
To find the angle of elevation of the top of the tree, we can use the tangent function in trigonometry. The formula is ( \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} ), where the opposite side is the height of the tree (12.7 m) and the adjacent side is the distance from the tree (23.7 m). Therefore, ( \theta = \tan^{-1}\left(\frac{12.7}{23.7}\right) ). Calculating this gives approximately ( \theta \approx 28.6^\circ ).
tan theta = sqrt(2)/2 = 1/sqrt(2).
Cotan(theta) is the reciprocal of the tan(theta). So, cot(theta) = 1/2.
-0.5736
The answer depends on what theta represents!
perimeter of what quadrant?
No.
tan2(theta) + 5*tan(theta) = 0 => tan(theta)*[tan(theta) + 5] = 0=> tan(theta) = 0 or tan(theta) = -5If tan(theta) = 0 then tan(theta) + cot(theta) is not defined.If tan(theta) = -5 then tan(theta) + cot(theta) = -5 - 1/5 = -5.2
96 degrees Let theta represent the measure of the angle we are trying to find and theta' represent the measure of its supplement. From the problem, we know: theta=theta'+12 Because supplementary angles sum to 180 degrees, we also know: theta+theta'=180 Substituting the value from theta in the first equation into the second, we get: (theta'+12)+theta'=180 2*theta'+12=180 2*theta'=180-12=168 theta'=168/2=84 Substituting this value for theta' back into the first equation, we get: theta+84=180 theta=180-84=96
cos(theta) = 0.7902 arcos(0.7902) = theta = 38 degrees you find complimentary angles
Pi / 5 would be in Quadrant I.
The length of the arc is r*theta where r is the radius and theta the angle subtended by the arc at the centre of the circle. If you do not know theta (or cannot derive it), you cannot find the length of the arc.
sine[theta]=opposite/hypotenuse=square root of (1-[cos[theta]]^2)