cos2(theta) = 1 cos2(theta) + sin2(theta) = 1 so sin2(theta) = 0 cos(2*theta) = cos2(theta) - sin2(theta) = 1 - 0 = 1
Remember that tan = sin/cos. So your expression is sin/cos times cos. That's sin(theta).
Let 'theta' = A [as 'A' is easier to type] sec A - 1/(sec A) = 1/(cos A) - cos A = (1 - cos^2 A)/(cos A) = (sin^2 A)/(cos A) = (tan A)*(sin A) Then you can swap back the 'A' with theta
It is a simple trigonometric equation. However, without information on whether the angles are measures in degrees or radians, and with no domain for theta, the equation cannot be solved.
cosine (90- theta) = sine (theta)
cos(theta) = 0.7902 arcos(0.7902) = theta = 38 degrees you find complimentary angles
cos2(theta) = 1 so cos(theta) = ±1 cos(theta) = -1 => theta = pi cos(theta) = 1 => theta = 0
Cos theta squared
cos2(theta) = 1 cos2(theta) + sin2(theta) = 1 so sin2(theta) = 0 cos(2*theta) = cos2(theta) - sin2(theta) = 1 - 0 = 1
4*cos2(theta) = 1 cos2(theta) = 1/4 cos(theta) = sqrt(1/4) = ±1/2 Now cos(theta) = 1/2 => theta = 60 + 360k or theta = 300 + 360k while Now cos(theta) = -1/2 => theta = 120 + 360k or theta = 240 + 360k where k is an integer.
- cos theta
Remember that tan = sin/cos. So your expression is sin/cos times cos. That's sin(theta).
(Sin theta + cos theta)^n= sin n theta + cos n theta
The identity for tan(theta) is sin(theta)/cos(theta).
Let 'theta' = A [as 'A' is easier to type] sec A - 1/(sec A) = 1/(cos A) - cos A = (1 - cos^2 A)/(cos A) = (sin^2 A)/(cos A) = (tan A)*(sin A) Then you can swap back the 'A' with theta
It is cotangent(theta).
-0.5736