To show that (cos tan = sin) ??? Remember that tan = (sin/cos) When you substitute it for tan, cos tan = cos (sin/cos) = sin QED
either cos OR tan-sin equals zero socos=0 at pi/2 and 3pi/2ortan=sin which is impossibleim not sure though
Prove that tan(x)sin(x) = sec(x)-cos(x) tan(x)sin(x) = [sin(x) / cos (x)] sin(x) = sin2(x) / cos(x) = [1-cos2(x)] / cos(x) = 1/cos(x) - cos2(x)/ cos(x) = sec(x)-cos(x) Q.E.D
sec + tan = cos /(1 + sin) sec and tan are defined so cos is non-zero. 1/cos + sin/cos = cos/(1 + sin) (1 + sin)/cos = cos/(1 + sin) cross-multiplying, (1 + sin)2 = cos2 (1 + sin)2 = 1 - sin2 1 + 2sin + sin2 = 1 - sin2 2sin2 + 2sin = 0 sin2 + sin = 0 sin(sin + 1) = 0 so sin = 0 or sin = -1 But sin = -1 implies that cos = 0 and cos is non-zero. Therefore sin = 0 or the solutions are k*pi radians where k is an integer.
(sin(x)cot(x) - cos(x))/tan(x)(Multiply by tan(x)/tan(x))sin(x) - cos(x)tan(x)(tan(x) = sin(x)/cos(x))sinx - cos(x)(sin(x)/cos(x))(cos(x) cancels out)sin(x) - sin(x)0
You can't. tan x = sin x/cos x So sin x tan x = sin x (sin x/cos x) = sin^2 x/cos x.
To show that (cos tan = sin) ??? Remember that tan = (sin/cos) When you substitute it for tan, cos tan = cos (sin/cos) = sin QED
No. Tan(x)=Sin(x)/Cos(x) Sin(x)Tan(x)=Sin2(x)/Cos(x) Cos(x)Tan(x)=Sin(x)
The value of tan and sin is positive so you must search quadrant that tan and sin value is positive. The only quadrant fill that qualification is Quadrant 1.
Assuming sin equals 0.3237, the angle is in quadrant I.
If tan 3a is equal to sin cos 45 plus sin 30, then the value of a = 0.4.
either cos OR tan-sin equals zero socos=0 at pi/2 and 3pi/2ortan=sin which is impossibleim not sure though
1/ Tan = 1/ (Sin/Cos) = Cos/Sin = Cot (Cotangent)
NO, sinxtanx=sinxsinx/cosx since tanx is sinx/cosx this is sin^2xcosx now add cosx cosx(sin^2x+1) after factoring Does this equal tanx? No, since this would require tanx to equal cosx(sin^2x+1) and it does not.
4
Prove that tan(x)sin(x) = sec(x)-cos(x) tan(x)sin(x) = [sin(x) / cos (x)] sin(x) = sin2(x) / cos(x) = [1-cos2(x)] / cos(x) = 1/cos(x) - cos2(x)/ cos(x) = sec(x)-cos(x) Q.E.D
sinx*secx ( secx= 1/cos ) sinx*(1/cosx) sinx/cosx=tanx tanx=tanx