answersLogoWhite

0


Best Answer

sin(2x) + sin(x) = 0

2sin(x)cos(x) + sin(x) = 0

sin(x)[2cos(x) + 1] = 0

sin(x) = 0 OR 2cos(x) + 1 = 0

sin(x) = 0 OR cos(x) = -1/2

x = n*pi OR x = 2/3*pi + 2n*pi OR x = -2/3*pi + 2n*pi

x = pi*[2n + (0 OR 2/3 OR 1 OR 4/3)]

Note that n may be any integer.

The solutions in [-2pi, 2pi] are: -2pi, -4/3pi, -pi, -2/3pi, 0, 2/3pi, pi, 4/3pi, 2pi

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How do you solve sin2x plus sinX equals 0?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Parenthesis 1 plus tanx end parenthesis divided by sinx equals cscx plus secx?

(1 + tanx)/sinxMultiply by sinx/sinxsinx + tanxsinxDivide by sin2x (1/sin2x) = cscxcscx + tan(x)csc(x)tanx = sinx/cosx and cscx = 1/sinxcscx + (sinx/cosx)(1/sinx)sinx cancels outcscx + 1/cosx1/cosx = secxcscx + secx


How do you simplify cosx plus sinx tanx?

to simplify Cosx=Sinx Tanx you should remember your fundamental and pythagorean identities.. Cosx + Sinx Tanx Cosx + Sinx (Sinx/Cosx) <---------- From Tanx= Sinx/Cosx Cosx + Sin2x/ Cos x <------------- do the LCD Cosx (Cosx/Cosx) + Sin2x/Cosx (Cos2x+Sin2x)/Cosx 1/Cosx <--------- From Sin2x + Cos2x =1 or Secx <-------- answer Comment if you have questions...:))


How should I solve 3sin2x 2sinx 1?

3*sin2x = 2*sinx +1


What is the solution sets for sin3x plus sin2x plus sinx equals 0?

The solitions are in degrees. You may convert them to degrees should you wish. x= 0,90,120,180,240,270,360


What is the derivative of 1 divided by sinx?

y=1/sinxy'=(sinx*d/dx(1)-1*d/dx(sinx))/(sin2x)y'=(sinx*0-1(cosx))/(sin2x)y'=(-cosx)/(sin2x)y'=-(cosx/sinx)*(1/sinx)y'=-cotx*cscx


Can you Show 1 over sinx cosx - cosx over sinx equals tanx?

From the Pythagorean identity, sin2x = 1-cos2x. LHS = 1/(sinx cosx) - cosx/sinx LHS = 1/(sinx cosx) - (cosx/sinx)(cosx/cosx) LHS = 1/(sinx cosx) - cos2x/(sinx cosx) LHS = (1- cos2x)/(sinx cosx) LHS = sin2x /(sinx cosx) [from Pythagorean identity] LHS = sin2x /(sinx cosx) LHS = sinx/cosx LHS = tanx [by definition] RHS = tanx LHS = RHS and so the identity is proven. Q.E.D.


How do you solve 1 minus cosx divided by sinx plus sinx divided by 1 minus cosx to get 2cscx?

(1-cosx)/sinx + sinx/(1- cosx) = [(1 - cosx)*(1 - cosx) + sinx*sinx]/[sinx*(1-cosx)] = [1 - 2cosx + cos2x + sin2x]/[sinx*(1-cosx)] = [2 - 2cosx]/[sinx*(1-cosx)] = [2*(1-cosx)]/[sinx*(1-cosx)] = 2/sinx = 2cosecx


What is the square root of sin2x and why?

sin2x is the conventional way of writing (sinx)2; it does not denote the sine of sinx as one might expect. So the square root is just sinx.


sinx+sin2x=0?

Sinx = 0 CosX= -1/2


Tan plus cot divided by tan equals csc squared?

(tanx+cotx)/tanx=(tanx/tanx) + (cotx/tanx) = 1 + (cosx/sinx)/(sinx/cosx)=1 + cos2x/sin2x = 1+cot2x= csc2x This is a pythagorean identity.


How do you solve 2 cos squared x - sinx - 1?

1


What is the differenciation of sinx plus sin2x?

d/dx (sin x + sin 2x) = cos x + 2cos 2x