Best Answer

It messes up the math.

For large amplitude swings, the simple relation that the period of a pendulum is directly proportional to the square root of the length of the pendulum (only, assuming constant gravity) no longer holds. Specifically, the period increases with increasing amplitude.

Q: How does the amplitude of the pendulum affect the pendulum?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

it doesn't

The period of a pendulum is (sort of) independent of the amplitude. This is technically true for very small, "infinitesimal" swings. In this range, amplitude does not affect period. For larger swings, however, a circular error is introduced, but it is possible to compensate with various designs. See the Related Link below for further information.

The amplitude of a pendulum is the distance between its equilibrium point and the farthest point that it reaches during each oscillation.

The pendulum swings twice as far.

That if the original amplitude was A then it is now 2*A.

Related questions

The amplitude of a pendulum does not affect its frequency. The frequency of a pendulum depends on the length of the pendulum and the acceleration due to gravity. The period of a pendulum (which is inversely related to frequency) depends only on these factors, not on the amplitude of the swing.

it doesn't

No, the amplitude of a pendulum (the maximum angle it swings from the vertical) does not affect the period (time taken to complete one full swing) of the pendulum. The period of a pendulum depends only on its length and the acceleration due to gravity.

The period of a pendulum is (sort of) independent of the amplitude. This is technically true for very small, "infinitesimal" swings. In this range, amplitude does not affect period. For larger swings, however, a circular error is introduced, but it is possible to compensate with various designs. See the Related Link below for further information.

Increasing the mass of a pendulum will decrease the frequency of its oscillations but will not affect the period. The amplitude of the pendulum's swing may decrease slightly due to increased inertia.

The amplitude of a pendulum is the distance between its equilibrium point and the farthest point that it reaches during each oscillation.

The pendulum swings twice as far.

The period of a pendulum is affected by its length, the acceleration due to gravity, and the angle at which it is released. Shorter pendulums have shorter periods, gravity influences the speed of the pendulum's swing, and releasing it from a higher angle increases its period.

That if the original amplitude was A then it is now 2*A.

Air resistance against the bob and string and friction in the pivot make the amplitude of a simple pendulum decrease.

The factors affecting the motion of a simple pendulum include the length of the pendulum, the mass of the pendulum bob, and the gravitational acceleration at the location where the pendulum is situated. The amplitude of the swing and any damping forces present also affect the motion of the pendulum.

Air resistance, Gravity, Friction, The attachment of the pendulum to the support bar, Length of String, Initial Energy (if you just let it go it will go slower than if you swing it) and the Latitude. Amplitude only affects large swings (in small swing the amplitude is doesn't affect the swing time). Mass of the pendulum does not affect the swing time. A formula for predicting the swing of a pendulum: T=2(pi)SQRT(L/g) T = time pi = 3.14... SQRT = square root L = Length g = gravity