The pendulum swings twice as far.
That if the original amplitude was A then it is now 2*A.
It messes up the math. For large amplitude swings, the simple relation that the period of a pendulum is directly proportional to the square root of the length of the pendulum (only, assuming constant gravity) no longer holds. Specifically, the period increases with increasing amplitude.
Air resistance against the bob and string and friction in the pivot make the amplitude of a simple pendulum decrease.
it doesn't
The amplitude of a pendulum does not affect its frequency. The frequency of a pendulum depends on the length of the pendulum and the acceleration due to gravity. The period of a pendulum (which is inversely related to frequency) depends only on these factors, not on the amplitude of the swing.
The pendulum swings twice as far.
That if the original amplitude was A then it is now 2*A.
It messes up the math. For large amplitude swings, the simple relation that the period of a pendulum is directly proportional to the square root of the length of the pendulum (only, assuming constant gravity) no longer holds. Specifically, the period increases with increasing amplitude.
A pendulum oscillating with a larger amplitude has a longer period than a pendulum oscillating with a smaller amplitude. This is due to the restoring force of gravity that acts on the pendulum, causing it to take longer to swing back and forth with larger swings.
Air resistance against the bob and string and friction in the pivot make the amplitude of a simple pendulum decrease.
One source of error in measuring the effect of amplitude in a simple pendulum could be air resistance, which can introduce discrepancies in the observed amplitude. Another source could be the precision of the measuring instruments used, leading to inaccuracies in recording the amplitude of the pendulum. Additionally, factors such as variations in the length of the string or angular displacement can also contribute to errors in the measurements of the pendulum's amplitude.
Amplitude in a simple pendulum is measured as the maximum angular displacement from the vertical position. It can be measured using a protractor or by observing the maximum angle the pendulum makes with the vertical when in motion.
Yes, force can affect a pendulum by changing its amplitude or frequency of oscillation. For example, increasing the force acting on a pendulum can cause it to swing with a larger amplitude. However, the force does not change the period of a pendulum, which is solely determined by its length.
it doesn't
Actually, the period of a pendulum does depend slightly on the amplitude. But at low amplitudes, it almost doesn't depend on the amplitude at all. This is related to the fact that in such a case, the restoring force - the force that pulls the pendulum back to its center position - is proportional to the displacement. That is, if the pendulum moves away further, the restoring force will also be greater.
No, the amplitude of a pendulum (the maximum angle it swings from the vertical) does not affect the period (time taken to complete one full swing) of the pendulum. The period of a pendulum depends only on its length and the acceleration due to gravity.