it doesn't
Chat with our AI personalities
Air resistance, Gravity, Friction, The attachment of the pendulum to the support bar, Length of String, Initial Energy (if you just let it go it will go slower than if you swing it) and the Latitude. Amplitude only affects large swings (in small swing the amplitude is doesn't affect the swing time). Mass of the pendulum does not affect the swing time. A formula for predicting the swing of a pendulum: T=2(pi)SQRT(L/g) T = time pi = 3.14... SQRT = square root L = Length g = gravity
It messes up the math. For large amplitude swings, the simple relation that the period of a pendulum is directly proportional to the square root of the length of the pendulum (only, assuming constant gravity) no longer holds. Specifically, the period increases with increasing amplitude.
The period of a pendulum is (sort of) independent of the amplitude. This is technically true for very small, "infinitesimal" swings. In this range, amplitude does not affect period. For larger swings, however, a circular error is introduced, but it is possible to compensate with various designs. See the Related Link below for further information.
A simple pendulum.
The amplitude of a pendulum is the distance between its equilibrium point and the farthest point that it reaches during each oscillation.