answersLogoWhite

0


Best Answer

Sine: the y-coordinate.

Cosine: the x-coordinate.

Tangent: the ratio of the two (y/x).

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How does the unit circle relate to sin cos and tan?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Why does cos negative theta equals positive theta?

You must think of the unit circle. negative theta is in either radians or degrees and represents a specific area on the unit circle. Remember the unit circle is also like a coordinate plane and cos is the x while sin is the y coordinate. Here is an example: cos(-45): The cos of negative 45 degrees is pi/4 and cos(45) is also pi/4


Verify that sin minus cos plus 1 divided by sin plus cos subtract 1 equals sin plus 1 divided by cos?

[sin - cos + 1]/[sin + cos - 1] = [sin + 1]/cosiff [sin - cos + 1]*cos = [sin + 1]*[sin + cos - 1]iff sin*cos - cos^2 + cos = sin^2 + sin*cos - sin + sin + cos - 1iff -cos^2 = sin^2 - 11 = sin^2 + cos^2, which is true,


How do you prove this trigonometric relationship sin3A equals 3sinA cos 2 A - sin 3 A?

sin(3A) = sin(2A + A) = sin(2A)*cos(A) + cos(2A)*sin(A)= sin(A+A)*cos(A) + cos(A+A)*sin(A) = 2*sin(A)*cos(A)*cos(A) + {cos^2(A) - sin^2(A)}*sin(A) = 2*sin(A)*cos^2(A) + sin(a)*cos^2(A) - sin^3(A) = 3*sin(A)*cos^2(A) - sin^3(A)


Evaluate sin30 plus cos60-2tan45?

using the unit circle, sin 30 + cos 60 - 2tan 45 can be solved as follows: = sin 30 + cos 60 - 2tan 45 = [1/2] + [1/2] - [2(1)] = 1 - 2 = -1


Coordinates of the points in Unit circle?

The points (x, y) of the unit circle are those that satisfy: x2 + y2 = 1 or in parametric form: x = cos t y = sin t as t varies from 0 to 2{pi} radians (= 360o)


How do you show that 2 sin squared x minus 1 divided by sin x minus cos x equals sin x plus cos x?

(2 sin^2 x - 1)/(sin x - cos x) = sin x + cos x (sin^2 x + sin^2 x - 1)/(sin x - cos x) =? sin x + cos x [sin^2 x - (1 - sin^2 x)]/(sin x - cos x) =? sin x + cos x (sin^2 x - cos^2 x)/(sin x - cos x) =? sin x + cos x [(sin x - cos x)(sin x + cos x)]/(sin x - cos x) =? sin x + cos x sin x + cos x = sin x + cos x


How do I find the product z1z2 if z1 5(cos20 plus isin20) and z2 8(cos15 plus isin15)?

Like normal expansion of brackets, along with: cos(A + B) = cos A cos B - sin A sin B sin(A + B) = sin A cos B + cos A sin B 5(cos 20 + i sin 20) × 8(cos 15 + i sin 15) = 5×8 × (cos 20 + i sin 20)(cos 15 + i sin 15) = 40(cos 20 cos 15 + i sin 15 cos 20 + i cos 15 sin 20 + i² sin 20 sin 15) = 40(cos 20 cos 15 - sin 20 cos 15 + i(sin 15 cos 20 + cos 15 sin 20)) = 40(cos(20 +15) + i sin(15 + 20)) = 40(cos 35 + i sin 35)


How do you simplify cos times cot plus sin?

cos*cot + sin = cos*cos/sin + sin = cos2/sin + sin = (cos2 + sin2)/sin = 1/sin = cosec


Factor sin cubed plus cos cubed?

sin cubed + cos cubed (sin + cos)( sin squared - sin.cos + cos squared) (sin + cos)(1 + sin.cos)


How would you prove left cosA plus sinA right times left cos2A plus sin2A right equals cosA plus sin3A?

You need to make use of the formulae for sin(A+B) and cos(A+B), and that cos is an even function: sin(A+B) = cos A sin B + sin A cos B cos(A+B) = cos A cos B - sin A sin B cos even fn → cos(-x) = cos(x) To prove: (cos A + sin A)(cos 2A + sin 2A) = cos A + sin 3A The steps are to work with the left hand side, expand the brackets, collect [useful] terms together, apply A+B formula above (backwards) and apply even nature of cos function: (cos A + sin A)(cos 2A + sin 2A) = cos A cos 2A + cos A sin 2A + sin A cos 2A + sin A sin 2A = (cos A cos 2A + sin A sin 2A) + (cos A sin 2A + sin A cos 2A) = cos(A - 2A) + sin(A + 2A) = cos(-A) + sin 3A = cos A + sin 3A which is the right hand side as required.


What is tan of 90 degrees?

On the unit circle at 90 degrees the 90 degrees in radians is pi/2 and the coordinates for this are: (0,1). The tan function = sin/cos. In the coordinate system x is cos and y is sin. Therefore (0,1) ; cos=0, & sin=1 . Tan=sin/cos so tan of 90 degrees = 1/0. The answer of tan(90) = undefined. There can not be a 0 in the denominator, because you can't devide by something with no quantity. Something with no quantity is 0. Or, on a limits point of view, it would be infinity.


How do you verify the identity of cos θ tan θ equals sin θ?

To show that (cos tan = sin) ??? Remember that tan = (sin/cos) When you substitute it for tan, cos tan = cos (sin/cos) = sin QED