You can select 12 numbers for the first digit, 11 numbers for the second digit, and 10 numbers for the third digit; so 12*11*10 = 1320 sets of 3 numbers can be made out of 12 different numbers.
You can select 9 numbers for the first digit, 8 numbers for the second digit, and 7numbers for the third digit; so 504 (e.g. 9*8*7) different three digit numbers can be written using the digits 1 through 9.
3 digit numbers are lessthan 4 digit numbers
In such cases, you should compare one digit at a time, from left to right, until you find a digit that is different in the two numbers. That is, compare the first digit (after the decimal period) with the first digit, the second digit with the second digit, etc.
There are 320 such numbers.
You can select 12 numbers for the first digit, 11 numbers for the second digit, and 10 numbers for the third digit; so 12*11*10 = 1320 sets of 3 numbers can be made out of 12 different numbers.
You can select 9 numbers for the first digit, 8 numbers for the second digit, and 7numbers for the third digit; so 504 (e.g. 9*8*7) different three digit numbers can be written using the digits 1 through 9.
3 digit numbers are lessthan 4 digit numbers
81 As there are no limits stated then you can have a number comprising a repeated single digit (such as 2222), two pairs of numbers (e.g. 2244) or three different numbers (such as 2462). The first digit can be one of any of the 3 numbers. The second digit can be one of any of the three numbers, as can the third digit and also the fourth. Then you can have 3 x 3 x 3 x 3 = 81 different 4-digit numbers using the three given numbers.
hi wazup hi wazup
In such cases, you should compare one digit at a time, from left to right, until you find a digit that is different in the two numbers. That is, compare the first digit (after the decimal period) with the first digit, the second digit with the second digit, etc.
first digit time second digit and second digit times first digit then repeat
5 x 10 x 5 = 250 different numbers, assuming there is no limit to each digits' use.
There are 320 such numbers.
There are 9 possible numbers for the first digit (one of {1, 2, ..., 9}); with 9 possible digits for the second digit (one of {0, 1, 2, ..., 9} which is not the first digit)); with 8 possible digits for the third digit (one of {0, 1, 2, ..., 9} less the 2 digits already chosen); This there are 9 × 9 × 8 = 648 such numbers.
To compare the two numbers, compare the first digit after the decimal point, then the second, etc., until you find a digit that is different.
You're describing all of the counting numbers from 100 to 999.That's all of the counting numbers up to 999, except for the first 99.So there are 900 of them.