There are two distinct real solutions.
Two distinct real solutions.
If the discriminant > 0 then 2 distinct real solutions.If the discriminant = 0 then 1 double real solution.If the discriminant < 0 then no real solutions (though there are two complex solutions).
The form is not specified in the question so it is hard to tell. But two parabolas with different vertices can certainly have the same axis of symmetry.
Nope. Consider x2+0x+1=0. This means x2+1=0. This has two solutions, but they are complex numbers: +i and -i, where i is the squareroot of -1. How about x2+0x+0=0? This means x2=0. This has two solutions, sure, but they aren't distinct. In this case, x=0 for both solutions, so we just consider them one solution.
There are two distinct real solutions.
Two distinct real solutions.
Yes, if the discriminant is zero, then there will be a double root, which will be real.Also, If the discriminant is positive, there will be two distinct real solutions. But if the discriminant is negative, then you will have two complex solutions.
If the discriminant > 0 then 2 distinct real solutions.If the discriminant = 0 then 1 double real solution.If the discriminant < 0 then no real solutions (though there are two complex solutions).
be immiscible. This means that the two solutions cannot be mixed together evenly and instead separate into distinct layers due to their differences in polarity or density.
Write the quadratic equation in the standard form: ax2 + bx + c = 0 Then calculate the discriminant = b2 - 4ac If the discriminant is greater than zero, there are two distinct real solutions. If the discriminant is zero, there is one real solution. If the discriminany is less than zero, there are no real solutions (there will be two distinct imaginary solutions).
The form is not specified in the question so it is hard to tell. But two parabolas with different vertices can certainly have the same axis of symmetry.
It depends on the discriminant value of the quadratic equation. If the discriminant is positive, there are two distinct real solutions; if it is zero, there is one real solution; and if it is negative, there are two complex conjugate solutions.
Six distinct factors Two distinct prime factors
Nope. Consider x2+0x+1=0. This means x2+1=0. This has two solutions, but they are complex numbers: +i and -i, where i is the squareroot of -1. How about x2+0x+0=0? This means x2=0. This has two solutions, sure, but they aren't distinct. In this case, x=0 for both solutions, so we just consider them one solution.
Two complex solutions.
There are two ways of classifying parabolas: By the direction in which they are open: open at the top or at the bottom. By the number of real roots: 2 real, 1 real or no real roots.