To find the value of ( x ) in the equation ( 7018x - 4 + 9x - 2 = 0 ), first combine like terms. This simplifies to ( 7027x - 6 = 0 ). Solving for ( x ), we add 6 to both sides to get ( 7027x = 6 ), and then divide by 7027, yielding ( x = \frac{6}{7027} ). Thus, ( x ) is approximately ( 0.000853 ).
16? using 16, you have (3x2 + 4)(3x2 + 4) = 9x2 + 24x + 16
Answer this question…A. x4 + 2x3 + 9x2 + 4 B. x4 + 4x3 + 9x2 + 4 C. x4 + 2x3 + 9x2 + 4x + 4 D. x4 + 2x3 + 9x2 - 4x + 4
= 53 9x3 + 9x2 + 5x1+ 3x1 27 + 18 + 5 + 3
The discriminant of a quadratic ax2 + bx + c is b2 - 4ac; thus: the discriminant of -9x2 + 6x + 14 is 62 - 4 x -9 x 14 = 540
33
16? using 16, you have (3x2 + 4)(3x2 + 4) = 9x2 + 24x + 16
Answer this question…A. x4 + 2x3 + 9x2 + 4 B. x4 + 4x3 + 9x2 + 4 C. x4 + 2x3 + 9x2 + 4x + 4 D. x4 + 2x3 + 9x2 - 4x + 4
48
= 53 9x3 + 9x2 + 5x1+ 3x1 27 + 18 + 5 + 3
The discriminant of a quadratic ax2 + bx + c is b2 - 4ac; thus: the discriminant of -9x2 + 6x + 14 is 62 - 4 x -9 x 14 = 540
33
9x2 + 12x + 4 = 9x2 + 6x + 6x + 4 = 3x(3x + 2) + 2(3x + 2) = (3x + 2)(3x + 2) = (3x + 2)2
9x2
9x2 + 9x - 10 =(3x - 2)(3x + 5)
(9x2 + 7)(9x2 - 7) = 81x4 - 49
9x2+2x-7 = (9x-7)(x+1) when factored
x=5