answersLogoWhite

0


Best Answer

T = 2pi*sqrt(l/g)

Therefore Tm/TE = (2pi*sqrt(l/gm))/(2pi*sqrt(l/gE))

Further simplify: Tm/TE = sqrt(gE/gm)

Tm = sqrt(gE/gm) * TE

Tm = sqrt(9.81 m/s2 / 1.62 m/s2) * 1 s

Tm = 2.46 s

User Avatar

Wiki User

15y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: If a pendulum with a period of 1 second is set in motion on the moon determine the new period of this pendulum?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Adduction describes what motion?

The motion will not be effected. If you build a pendulum in your garage that swings with a period of one second, then bring it on a train, it will again swing with a period of one second, provided the train moves uniformly.


What is the length of second pendelum?

The length of a pendulum affects its period of oscillation, but to determine the length of a specific pendulum, you would need to measure it. The formula for the period of a pendulum is T = 2π√(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.


What is second pendulum?

Second's pendulum is the one which has 2 second as its Time period.


How great is the period of a pendulum that takes one second to make a complete to-and-fro vibration?

The period of a pendulum that takes one second to complete a to-and-fro vibration is one second. This means it takes one second for the pendulum to swing from one extreme to the other and back again. The period is the time it takes for one complete cycle of motion.


What is the period of a pendulum that takes 1 second?

The period of a pendulum that takes 1 second is also 1 second. The period of a pendulum is the time it takes to complete one full swing back and forth.


What is the time period of second pendulum from its extreme to mean position?

The time period of a second pendulum from its extreme position to its mean position is one second. A second pendulum is a pendulum with a length such that its period of oscillation is two seconds when swinging between two extremes.


How does a pendulum clock work?

A pendulum clock works by utilizing the regular swinging motion of a suspended weight on a rod (the pendulum) to regulate the passage of time. The period of the pendulum's swing is usually set to one second, so each swing back and forth represents one second passing. The swinging motion of the pendulum powers the gears in the clock mechanism, allowing the hands to move in a precise and consistent manner to indicate the time.


What will be the time period of occillatione length of the second pendulum is one third?

The time period of a pendulum is determined by its length and gravitational acceleration. If the length of the second pendulum is one third of the original pendulum, its time period would be shorter since the time period is directly proportional to the square root of the length.


The time for a complete to-and-fro swing of a pendulum is called its frequency?

Actually, the time for a complete to-and-fro swing of a pendulum is called its period, which is the time taken to complete one full cycle of motion. The frequency of a pendulum is the number of cycles it completes in a given time, usually measured in hertz (cycles per second).


What is the timeperiod of pendulum which ticks seconds?

The period is 1 second.


What is the period of a pendulum that takes one second to make a complete back and forth vibration?

The period of a pendulum that takes one second to complete a full oscillation is 2 seconds. Each back and forth swing (oscillation) consists of two periods, one forward and one backward. So, the total time for a complete back and forth vibration is 2 seconds.


How do you measure the frequency of the periodic motion of a pendulum?

You can measure the frequency of a pendulum's periodic motion by counting the number of complete oscillations it makes in a given time period, usually one second. The frequency is the number of cycles or oscillations per unit time and is usually measured in Hertz (Hz), which represents cycles per second.