To rotate a point 180 degrees counterclockwise about the origin, you can simply change the signs of both the x and y coordinates of the point. For example, if the original point is (x, y), after the rotation, the new coordinates will be (-x, -y). This effectively reflects the point across the origin.
A 270-degree counterclockwise rotation around the origin in a Cartesian coordinate system transforms a point ((x, y)) to the new coordinates ((y, -x)). This means the x-coordinate becomes the y-coordinate, and the y-coordinate changes its sign and becomes the new x-coordinate. Essentially, it rotates the point three-quarters of the way around the origin.
To find the image of the point (1, -6) after a 270-degree counterclockwise rotation about the origin, we can use the rotation formula. A 270-degree counterclockwise rotation is equivalent to a 90-degree clockwise rotation. The coordinates transform as follows: (x, y) becomes (y, -x). Therefore, the image of (1, -6) is (-6, -1).
Latin.
To find the image of the point (1, -6) after a 180-degree counterclockwise rotation about the origin, you can use the rotation transformation. A 180-degree rotation changes the coordinates (x, y) to (-x, -y). Therefore, the image of the point (1, -6) is (-1, 6).
If B was (x, y) then B' is (-y, x).
Latin.
the origin and it has the coordinates of (0,0)
Origin is at points (0, 0) in coordinate geometry. If you are shifting/translating the origin, you have to add the respective x and y coordinates of the new origin with respect to the old origin to get the coordinates of the new origin.
A 180° rotation is half a rotation and it doesn't matter if it is clockwise of counter clockwise. When rotating 180° about the origin, the x-coordinate and y-coordinates change sign Thus (1, -6) → (-1, 6) after rotating 180° around the origin.
(0,0)
0,0 is the origin
To determine the series of transformations that maps quadrilateral EFGH onto its image, we need the coordinates of the vertices of EFGH and its image. Typically, transformations can include translations, rotations, reflections, and dilations. For example, if EFGH is translated 3 units right and 2 units up, the new coordinates of its vertices would be calculated by adding (3, 2) to each vertex's coordinates. If further transformations are needed, such as a rotation of 90 degrees counterclockwise around the origin, the new coordinates can be calculated using the rotation matrix. Please provide the coordinates for precise calculations.
The origin.
The Origin.
0,0
pole