If B was (x, y) then B' is (-y, x).
It is (-6, -1).
(-1, -4) rotated 90 degrees anticlockwise
It is (-1, 6).Also, if the rotation is 180 degrees, then clockwise or anticlockwise are irrelevant.It is (-1, 6).
A rotation is a transformations when a figure is turned around a point called the point of rotation. The image has the same lengths and angle measures, and differs only in position. Rotations that are counterclockwise are rotations of positive angles. All rotations are assumed to be about the origin. R90 deg (x, y) = (-y, x) R180 deg (x, y) = (-x, -y) R270 deg (x, y) = (y, -x) R360 deg (x, y) = (x, y)
Origin is at points (0, 0) in coordinate geometry. If you are shifting/translating the origin, you have to add the respective x and y coordinates of the new origin with respect to the old origin to get the coordinates of the new origin.
To find the image of the point (1, -6) after a 180-degree counterclockwise rotation about the origin, you can use the rotation transformation. A 180-degree rotation changes the coordinates (x, y) to (-x, -y). Therefore, the image of the point (1, -6) is (-1, 6).
A 180° rotation is half a rotation and it doesn't matter if it is clockwise of counter clockwise. When rotating 180° about the origin, the x-coordinate and y-coordinates change sign Thus (1, -6) → (-1, 6) after rotating 180° around the origin.
A rotation of 180 degrees counterclockwise refers to turning a point or shape around a central point (such as the origin in a coordinate plane) by half a turn. This effectively moves each point to a position that is directly opposite its starting point. For example, if a point is at coordinates (x, y), after a 180-degree counterclockwise rotation, its new coordinates will be (-x, -y). This transformation maintains the shape and size but changes its orientation.
To rotate a point 180 degrees counterclockwise about the origin, you can simply change the signs of both the x and y coordinates of the point. For example, if the original point is (x, y), after the rotation, the new coordinates will be (-x, -y). This effectively reflects the point across the origin.
To find the image of the point (4, 3) after a 90-degree rotation counterclockwise about the origin, you can use the transformation formula for rotation. The new coordinates will be (-y, x), which means the image of the point (4, 3) will be (-3, 4).
It is (-6, -1).
The rotation rule for a 180-degree counterclockwise rotation involves turning a point around the origin (0, 0) by half a circle. For any point (x, y), the new coordinates after this rotation become (-x, -y). This means that both the x and y coordinates are negated. For example, the point (3, 4) would rotate to (-3, -4).
It is (-1, 6).
The rule for a rotation by 180° about the origin is (x,y)→(−x,−y) .
When a point ((x, y)) is rotated around the origin by an angle (\theta), the new coordinates ((x', y')) can be determined using the rotation formulas: (x' = x \cos(\theta) - y \sin(\theta)) and (y' = x \sin(\theta) + y \cos(\theta)). This transformation effectively changes the point's position in a circular motion around the origin based on the specified angle. The direction of rotation (clockwise or counterclockwise) also affects the signs of the trigonometric functions used.
A counterclockwise rotation of 270 degrees about the origin is equivalent to a clockwise rotation of 90 degrees. To apply this transformation to a point (x, y), you can use the rule: (x, y) transforms to (y, -x). This means that the x-coordinate becomes the y-coordinate, and the y-coordinate becomes the negative of the x-coordinate.
(-1, -4) rotated 90 degrees anticlockwise