To find the image of the point (4, 3) after a 90-degree rotation counterclockwise about the origin, you can use the transformation formula for rotation. The new coordinates will be (-y, x), which means the image of the point (4, 3) will be (-3, 4).
The answer will depend on whether the rotation is clockwise or counterclockwise.
It is (6, 1).
To find the image of the point (5, 4) when rotated 180 degrees about the origin, you can apply the transformation that changes the signs of both coordinates. Thus, the new coordinates will be (-5, -4). Therefore, the image of the point (5, 4) after a 180-degree rotation about the origin is (-5, -4).
To find the image of the point (4, 3) after a -90-degree rotation (which is equivalent to a 90-degree clockwise rotation), you can use the rotation formula: (x', y') = (y, -x). Applying this to the point (4, 3), the new coordinates become (3, -4). Therefore, the image of the point (4, 3) after a -90-degree rotation is (3, -4).
It is (-6, -1).
To find the image of the point (4, 3) after a 90-degree rotation counterclockwise about the origin, you can use the transformation formula for rotation. The new coordinates will be (-y, x), which means the image of the point (4, 3) will be (-3, 4).
It is (-1, 6).
A 180° rotation is half a rotation and it doesn't matter if it is clockwise of counter clockwise. When rotating 180° about the origin, the x-coordinate and y-coordinates change sign Thus (1, -6) → (-1, 6) after rotating 180° around the origin.
The rule for a rotation by 180° about the origin is (x,y)→(−x,−y) .
(-1, -4) rotated 90 degrees anticlockwise
The answer will depend on whether the rotation is clockwise or counterclockwise.
The answer will depend on whether the rotation is clockwise or counterclockwise.
It is (6, 1).
It is (-1, 6).Also, if the rotation is 180 degrees, then clockwise or anticlockwise are irrelevant.It is (-1, 6).
To find the image of ABC for a 180-degree counterclockwise rotation about point P, we would reflect each point of the triangle across the line passing through P. The resulting image of ABC would be a congruent triangle with its vertices in opposite positions relative to the original triangle.
To find the image of the point (4, 3) after a -90-degree rotation (which is equivalent to a 90-degree clockwise rotation), you can use the rotation formula: (x', y') = (y, -x). Applying this to the point (4, 3), the new coordinates become (3, -4). Therefore, the image of the point (4, 3) after a -90-degree rotation is (3, -4).