Draw a right triangle. To get a tangent of 2, the side opposite the angle might be 2, the adjacent side might be 1 (other combinations, in the ratio 2:1, are also possible). In this case, the hypothenuse is square root of 5 (Law of Pythagoras). Therefore, the cosine is 1 / square root of 5.
Chat with our AI personalities
2
(1-cosx)/sinx + sinx/(1- cosx) = [(1 - cosx)*(1 - cosx) + sinx*sinx]/[sinx*(1-cosx)] = [1 - 2cosx + cos2x + sin2x]/[sinx*(1-cosx)] = [2 - 2cosx]/[sinx*(1-cosx)] = [2*(1-cosx)]/[sinx*(1-cosx)] = 2/sinx = 2cosecx
y=sinx y=cosxsinx=cosx=>sinx/cosx=1=>tanx=1=>x=45oie.. y=sin45=cos45y=1/(square root of 2)
The derivative of 2^x is 2^x * ln2 so the derivative of 2^cosx * ln2 multiplied by d/dx of cox, which is -sinx so the derivative of the inside function is -sinx * 2^cosx *ln2. As to the final question, using the chain rule, d/dx (2^cosx)^0.5 will equal half of (2^cosx)^-0.5 * -sinx * 2^cosx * ln2
(1+cosx)(1-cosx)= 1 +cosx - cosx -cos^2x (where ^2 means squared) = 1-cos^2x = sin^2x (sin squared x)